While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
The influences of surfactant type and concentration on the content and uniformity of SiC particles in Ni-SiC deposit were studied in this paper. The electrochemical behavior of preparing Ni-SiC composite coating was i...The influences of surfactant type and concentration on the content and uniformity of SiC particles in Ni-SiC deposit were studied in this paper. The electrochemical behavior of preparing Ni-SiC composite coating was investigated using the cyclic voltammetry method. Then the impact of surfactants on the deposition potential of Ni-SiC coating was analyzed. Electrochemical studies showed that the cathode overvoltage increases gradually with increasing SDS(Sodium dodecyl sulfate) concentration. The CV curve showed the shift towards a lower current at a given potential with increasing SDS concentration. Ni-SiC composite coatings were prepared by electrodeposition. The experimental results show that the dispersion of 40 nm SiC in Ni-SiC coating obtained in the electrolyte containing SDS is superior that containing CTAB(cetyltrimethyl ammonium bromide). CTAB increases the content of 40 nm SiC particles in the Ni-SiC coating, but the uniformity of 40 nm SiC particles in Ni-SiC composite coating is poor. SiC particles are still agglomerated. Compared with the anionic surfactant SDS and the cationic surfactant CTAB, surfactant SDS makes the particles better dispersed. But the contribution of surfactant SDS for co-deposition amount of SiC particles is negligible. The cationic surfactant CTAB can effectively improve the suspension performance of SiC particles and promote the co-deposition of SiC particles and metallic nickel. But there is still some reunion of SiC.展开更多
The interaction between N, N′-bis(dimethyldodecyl)-1,6-hexanediammoniumdibromide (G12-6-12) and cetyltrimethylammonium bromide (CTAB) in D20 aqueous medium has been investigated by NMR at 298 K. The G12-6-12 an...The interaction between N, N′-bis(dimethyldodecyl)-1,6-hexanediammoniumdibromide (G12-6-12) and cetyltrimethylammonium bromide (CTAB) in D20 aqueous medium has been investigated by NMR at 298 K. The G12-6-12 and CTAB are about 0.773 and measured critical micelle concentration (cmc) of 0.668 mmol/L, respectively. The cmc^* (cmc of mixture) values are less than CMC^* (cmc of ideally mixed solution) in the mixed system, and the interaction parameter βM〈0 at different molar fractions α of G12-6-12 in the mixed systems, but just when α≤0.3, cmc^* values are much smaller than CMC^*, and βM satisfies the relation of |βM|〉|ln(cmc1/cmc2)| (cmcl: cmc of pure G12-6-12 and cmc2: cmc Of pure CTAB). The results indicate that there exists synergism between G12-6-12 and CTAB, and they can form mixed micelles, which is further proven by 2D NOESY and self-diffusion coefficient D experiments. There are intermolecular cross peaks between G12-6-12 and CTAB in 2D NOESY, and the radius of micelles in mixed solution is bigger than that in G12-6-12 pure solution in D experiments, indicating there are mixed micelles. However, when α〉0.3, we find that cmc^*≈CMC^*, βM≈0, obviously, the two surfactants are almost ideal mixing fitting the pseudo-phase separation model and regular solution theory.展开更多
The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate(SDS) and cetyl trimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molar ratios of the tw...The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate(SDS) and cetyl trimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molar ratios of the two surfactants, the addition of sodium chloride and temperature. Vesicles formation was found in the both phases by TEM image.展开更多
A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetr...A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications.展开更多
Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro...In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.展开更多
Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires...Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.展开更多
Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceilin...Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).展开更多
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition...Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.展开更多
Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t...Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.展开更多
Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used ...Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods.展开更多
2-Hexyl-1-decanol was used as the main material to prepare a block-polyether sulfonate extended surfactant(IC_(16)P_(6)E_(6)S).The solubility and surface active properties of IC_(16)P_(6)E_(6)S were evaluated,and then...2-Hexyl-1-decanol was used as the main material to prepare a block-polyether sulfonate extended surfactant(IC_(16)P_(6)E_(6)S).The solubility and surface active properties of IC_(16)P_(6)E_(6)S were evaluated,and then the IC_(16)P_(6)E_(6)S was mixed with a cationic surfactant hexadecyl trimethyl ammonium bromide(CTAB)and a zwitterionic betaine surfactant(HAB),respectively.The effects of mixing ratios of IC_(16)P_(6)E_(6)S∶HAB and IC_(16)P_(6)E_(6)S∶CTAB on the hydrodynamic diameter and interfacial properties were discussed.The emulsification,adsorption and laboratory core displacement experiments of the binary system were tested.The results showed that the critical micelle concentration(cmc)of IC_(16)P_(6)E_(6)S in distilled water was 0.1 mmol/L and the surface tension at cmc(γcmc)was 28.53 mN/m.IC_(16)P_(6)E_(6)S showed strong synergistic effects with HAB and CTAB,and the mixed systems could effectively reduce the interfacial tension compared with single surfactants.The mixed systems with n(IC_(16)P_(6)E_(6)S)∶n(HAB)of 1∶1 and n(IC_(16)P_(6)E_(6)S)∶n(CTAB)of 1∶3 could maintain ultra-low interfacial tension(in the order of magnitude of 10^(-3)mN/m)in the salinity range of 1%-7%NaCl and low interfacial tension(in the order of magnitude of 10^(-2)mN/m)in the salinity range of 3%-7%NaCl,respectively.With the increase of salinity,the emulsion formed by the mixed surfactant system underwent the phase transition process from WinsorⅠto WinsorⅢand then to WinsorⅡ.The emulsion of mixed IC_(16)P_(6)E_(6)S/HAB system had more middle-phase emulsion volume than that of the mixed IC_(16)P_(6)E_(6)S/CTAB system,and the former emulsion system was more stable.The mixed IC_(16)P_(6)E_(6)S/HAB system also had good solubilization effect,and the amount of oil solubilization was up to 43 mL/g.Meanwhile,it had good adsorption resistance.Compared with water flooding,the depressurization rate could reach 25.00%and the recovery could be enhanced by 11.75%,indicating that the IC_(16)P_(6)E_(6)S/HAB system was more conducive to the depressurization and injection enhancement for low-permeability reservoirs.展开更多
From Oct.28th to Nov.2nd,2024,China Surfactant Applied Technology Training and Exchanges Session was held in China Research Institute of Daily Chemical,with 29 people from 23 companies of the surfactant industrial cha...From Oct.28th to Nov.2nd,2024,China Surfactant Applied Technology Training and Exchanges Session was held in China Research Institute of Daily Chemical,with 29 people from 23 companies of the surfactant industrial chain attending.The training forms included classroom instructions,exchanges,and field visit and learning.The contents of theory instructions involved the reality and development trends of surfactant sector with a simple analysis of sulfonated anionic surfactant section.展开更多
In March 2024,a large batch of people along the surfactant industrial chain attended the“2024 Chinese Surfactant Industrial Meeting”,also the 2024(The 2nd)Chinese International Surfactant Industrial Expo held betwee...In March 2024,a large batch of people along the surfactant industrial chain attended the“2024 Chinese Surfactant Industrial Meeting”,also the 2024(The 2nd)Chinese International Surfactant Industrial Expo held between March 25 and March 28,so as to explore new possibilities in the industry.This event was hosted by China Research Institute of Daily Chemical Industry and National Engineering Research Center for Surfactant(NERCS)and organized by Productivity Promotion Centre for the Surfactant and Detergent Industry and China Daily chemical Industry Information Center,with the special support by China Quality Mark Certification Group.展开更多
BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal...BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal death in hospitals in China.The main mechanism of the disease is hypoxemia and hypercapnia caused by lack of surfactant AIM To explore the effect of pulmonary surfactant(PS)combined with noninvasive positive pressure ventilation on keratin-14(KRT-14)and endothelin-1(ET-1)levels in peripheral blood and the effectiveness in treating NRDS.METHODS Altogether 137 neonates with respiratory distress syndrome treated in our hospital from April 2019 to July 2021 were included.Of these,64 control cases were treated with noninvasive positive pressure ventilation and 73 observation cases were treated with PS combined with noninvasive positive pressure ventilation.The expression of KRT-14 and ET-1 in the two groups was compared.The deaths,complications,and PaO_(2),PaCO_(2),and PaO_(2)/FiO_(2)blood gas indexes in the two groups were compared.Receiver operating characteristic curve(ROC)analysis was used to determine the diagnostic value of KRT-14 and ET-1 in the treatment of NRDS.RESULTS The observation group had a significantly higher effectiveness rate than the control group.There was no significant difference between the two groups in terms of neonatal mortality and adverse reactions,such as bronchial dysplasia,cyanosis,and shortness of breath.After treatment,the levels of PaO_(2)and PaO_(2)/FiO_(2)in both groups were significantly higher than before treatment,while the level of PaCO_(2)was significantly lower.After treatment,the observation group had significantly higher levels of PaO_(2)and PaO_(2)/FiO_(2)than the control group,while PaCO_(2)was notably lower in the observation group.After treatment,the KRT-14 and ET-1 levels in both groups were significantly decreased compared with the pre-treatment levels.The observation group had a reduction of KRT-14 and ET-1 levels than the control group.ROC curve analysis showed that the area under the curve(AUC)of KRT-14 was 0.791,and the AUC of ET-1 was 0.816.CONCLUSION Combining PS with noninvasive positive pressure ventilation significantly improved the effectiveness of NRDS therapy.KRT-14 and ET-1 levels may have potential as therapeutic and diagnostic indicators.展开更多
In order to solve the problem of limited makeup removal ability of a single surfactant of Peg-20 glyceryl triisostearate in makeup remover,an efficient system was prepared which contained PEG-20 glyceryl triisostearat...In order to solve the problem of limited makeup removal ability of a single surfactant of Peg-20 glyceryl triisostearate in makeup remover,an efficient system was prepared which contained PEG-20 glyceryl triisostearate and a combination of Sorbeth-30 tetraoleate and Peg-5 glyceryl triisostearate.Leather test,skin colorimeter test and consumer self-evaluation were used to assess the makeup removal ability,rinsing performance and softness skin feel of the efficient makeup remover base.The results showed that a 7%combination of Sorbeth-30 tetraoleate and PEG-5 glyceryl triisostearate could significantly improve the comprehensive performance of single PEG-20 glyceryl triisostearate makeup remover system,furthermore,they performed best at the ratio of 6:1.We hope the findings can have guiding significance for the development of makeup remover products.展开更多
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金the Program for Liaoning Excellent Talents in University(LJQ2015074)the Shenyang Science and Technology Plan(17-231-1-15)
文摘The influences of surfactant type and concentration on the content and uniformity of SiC particles in Ni-SiC deposit were studied in this paper. The electrochemical behavior of preparing Ni-SiC composite coating was investigated using the cyclic voltammetry method. Then the impact of surfactants on the deposition potential of Ni-SiC coating was analyzed. Electrochemical studies showed that the cathode overvoltage increases gradually with increasing SDS(Sodium dodecyl sulfate) concentration. The CV curve showed the shift towards a lower current at a given potential with increasing SDS concentration. Ni-SiC composite coatings were prepared by electrodeposition. The experimental results show that the dispersion of 40 nm SiC in Ni-SiC coating obtained in the electrolyte containing SDS is superior that containing CTAB(cetyltrimethyl ammonium bromide). CTAB increases the content of 40 nm SiC particles in the Ni-SiC coating, but the uniformity of 40 nm SiC particles in Ni-SiC composite coating is poor. SiC particles are still agglomerated. Compared with the anionic surfactant SDS and the cationic surfactant CTAB, surfactant SDS makes the particles better dispersed. But the contribution of surfactant SDS for co-deposition amount of SiC particles is negligible. The cationic surfactant CTAB can effectively improve the suspension performance of SiC particles and promote the co-deposition of SiC particles and metallic nickel. But there is still some reunion of SiC.
文摘The interaction between N, N′-bis(dimethyldodecyl)-1,6-hexanediammoniumdibromide (G12-6-12) and cetyltrimethylammonium bromide (CTAB) in D20 aqueous medium has been investigated by NMR at 298 K. The G12-6-12 and CTAB are about 0.773 and measured critical micelle concentration (cmc) of 0.668 mmol/L, respectively. The cmc^* (cmc of mixture) values are less than CMC^* (cmc of ideally mixed solution) in the mixed system, and the interaction parameter βM〈0 at different molar fractions α of G12-6-12 in the mixed systems, but just when α≤0.3, cmc^* values are much smaller than CMC^*, and βM satisfies the relation of |βM|〉|ln(cmc1/cmc2)| (cmcl: cmc of pure G12-6-12 and cmc2: cmc Of pure CTAB). The results indicate that there exists synergism between G12-6-12 and CTAB, and they can form mixed micelles, which is further proven by 2D NOESY and self-diffusion coefficient D experiments. There are intermolecular cross peaks between G12-6-12 and CTAB in 2D NOESY, and the radius of micelles in mixed solution is bigger than that in G12-6-12 pure solution in D experiments, indicating there are mixed micelles. However, when α〉0.3, we find that cmc^*≈CMC^*, βM≈0, obviously, the two surfactants are almost ideal mixing fitting the pseudo-phase separation model and regular solution theory.
文摘The phenomenon of two dilute aqueous phases composed of sodium dodecylsulfate(SDS) and cetyl trimethyl ammonium bromide(CTAB) was investigated under various conditions such as concentrations and molar ratios of the two surfactants, the addition of sodium chloride and temperature. Vesicles formation was found in the both phases by TEM image.
文摘A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications.
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
基金supported by the Key Research and Development Program of Jilin Provincial Department of Science and Technology (No. 20210201031GX)Innovation capacity building project of Jilin Province (No. 2023C031-2)The Key Research and Development Program of Jiangsu Province (No. BE2022057-1)。
文摘In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.
文摘Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.
基金the financial support from the National Natural Science Foundation of China(Nos:21773161,22172108)。
文摘Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and “Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金supported by a key project of the National Natural Science Foundation of China(No 21938003)the Postdoctoral Foundation of the PetroChina Dagang Oilfield Company(No.2023BO59).
文摘Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.
基金supported by China National Postdoctoral Program for Innovative Talents (BX20230121)China Postdoctoral Science Foundation (2023M741163)Shanghai Super Postdoctoral Incentive Program (2023741)。
文摘Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.
基金funded by the National Key R&D Program of China(No.2018YFA0702400).
文摘Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods.
文摘2-Hexyl-1-decanol was used as the main material to prepare a block-polyether sulfonate extended surfactant(IC_(16)P_(6)E_(6)S).The solubility and surface active properties of IC_(16)P_(6)E_(6)S were evaluated,and then the IC_(16)P_(6)E_(6)S was mixed with a cationic surfactant hexadecyl trimethyl ammonium bromide(CTAB)and a zwitterionic betaine surfactant(HAB),respectively.The effects of mixing ratios of IC_(16)P_(6)E_(6)S∶HAB and IC_(16)P_(6)E_(6)S∶CTAB on the hydrodynamic diameter and interfacial properties were discussed.The emulsification,adsorption and laboratory core displacement experiments of the binary system were tested.The results showed that the critical micelle concentration(cmc)of IC_(16)P_(6)E_(6)S in distilled water was 0.1 mmol/L and the surface tension at cmc(γcmc)was 28.53 mN/m.IC_(16)P_(6)E_(6)S showed strong synergistic effects with HAB and CTAB,and the mixed systems could effectively reduce the interfacial tension compared with single surfactants.The mixed systems with n(IC_(16)P_(6)E_(6)S)∶n(HAB)of 1∶1 and n(IC_(16)P_(6)E_(6)S)∶n(CTAB)of 1∶3 could maintain ultra-low interfacial tension(in the order of magnitude of 10^(-3)mN/m)in the salinity range of 1%-7%NaCl and low interfacial tension(in the order of magnitude of 10^(-2)mN/m)in the salinity range of 3%-7%NaCl,respectively.With the increase of salinity,the emulsion formed by the mixed surfactant system underwent the phase transition process from WinsorⅠto WinsorⅢand then to WinsorⅡ.The emulsion of mixed IC_(16)P_(6)E_(6)S/HAB system had more middle-phase emulsion volume than that of the mixed IC_(16)P_(6)E_(6)S/CTAB system,and the former emulsion system was more stable.The mixed IC_(16)P_(6)E_(6)S/HAB system also had good solubilization effect,and the amount of oil solubilization was up to 43 mL/g.Meanwhile,it had good adsorption resistance.Compared with water flooding,the depressurization rate could reach 25.00%and the recovery could be enhanced by 11.75%,indicating that the IC_(16)P_(6)E_(6)S/HAB system was more conducive to the depressurization and injection enhancement for low-permeability reservoirs.
文摘From Oct.28th to Nov.2nd,2024,China Surfactant Applied Technology Training and Exchanges Session was held in China Research Institute of Daily Chemical,with 29 people from 23 companies of the surfactant industrial chain attending.The training forms included classroom instructions,exchanges,and field visit and learning.The contents of theory instructions involved the reality and development trends of surfactant sector with a simple analysis of sulfonated anionic surfactant section.
文摘In March 2024,a large batch of people along the surfactant industrial chain attended the“2024 Chinese Surfactant Industrial Meeting”,also the 2024(The 2nd)Chinese International Surfactant Industrial Expo held between March 25 and March 28,so as to explore new possibilities in the industry.This event was hosted by China Research Institute of Daily Chemical Industry and National Engineering Research Center for Surfactant(NERCS)and organized by Productivity Promotion Centre for the Surfactant and Detergent Industry and China Daily chemical Industry Information Center,with the special support by China Quality Mark Certification Group.
文摘BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal death in hospitals in China.The main mechanism of the disease is hypoxemia and hypercapnia caused by lack of surfactant AIM To explore the effect of pulmonary surfactant(PS)combined with noninvasive positive pressure ventilation on keratin-14(KRT-14)and endothelin-1(ET-1)levels in peripheral blood and the effectiveness in treating NRDS.METHODS Altogether 137 neonates with respiratory distress syndrome treated in our hospital from April 2019 to July 2021 were included.Of these,64 control cases were treated with noninvasive positive pressure ventilation and 73 observation cases were treated with PS combined with noninvasive positive pressure ventilation.The expression of KRT-14 and ET-1 in the two groups was compared.The deaths,complications,and PaO_(2),PaCO_(2),and PaO_(2)/FiO_(2)blood gas indexes in the two groups were compared.Receiver operating characteristic curve(ROC)analysis was used to determine the diagnostic value of KRT-14 and ET-1 in the treatment of NRDS.RESULTS The observation group had a significantly higher effectiveness rate than the control group.There was no significant difference between the two groups in terms of neonatal mortality and adverse reactions,such as bronchial dysplasia,cyanosis,and shortness of breath.After treatment,the levels of PaO_(2)and PaO_(2)/FiO_(2)in both groups were significantly higher than before treatment,while the level of PaCO_(2)was significantly lower.After treatment,the observation group had significantly higher levels of PaO_(2)and PaO_(2)/FiO_(2)than the control group,while PaCO_(2)was notably lower in the observation group.After treatment,the KRT-14 and ET-1 levels in both groups were significantly decreased compared with the pre-treatment levels.The observation group had a reduction of KRT-14 and ET-1 levels than the control group.ROC curve analysis showed that the area under the curve(AUC)of KRT-14 was 0.791,and the AUC of ET-1 was 0.816.CONCLUSION Combining PS with noninvasive positive pressure ventilation significantly improved the effectiveness of NRDS therapy.KRT-14 and ET-1 levels may have potential as therapeutic and diagnostic indicators.
文摘In order to solve the problem of limited makeup removal ability of a single surfactant of Peg-20 glyceryl triisostearate in makeup remover,an efficient system was prepared which contained PEG-20 glyceryl triisostearate and a combination of Sorbeth-30 tetraoleate and Peg-5 glyceryl triisostearate.Leather test,skin colorimeter test and consumer self-evaluation were used to assess the makeup removal ability,rinsing performance and softness skin feel of the efficient makeup remover base.The results showed that a 7%combination of Sorbeth-30 tetraoleate and PEG-5 glyceryl triisostearate could significantly improve the comprehensive performance of single PEG-20 glyceryl triisostearate makeup remover system,furthermore,they performed best at the ratio of 6:1.We hope the findings can have guiding significance for the development of makeup remover products.