Perovskite-like oxide La2-xSrxCuO4 (x = 0, 1) single crystallites with microrod-like morphologies and tetragonal crystal structures were prepared hydrothermally at 240 ℃ with poly(ethylene glycol) (PEG) or hexa...Perovskite-like oxide La2-xSrxCuO4 (x = 0, 1) single crystallites with microrod-like morphologies and tetragonal crystal structures were prepared hydrothermally at 240 ℃ with poly(ethylene glycol) (PEG) or hexadecyltrimethyl ammonium bromide (CTAB) as a surfactant and after calcination at 850 ℃. The physicochemical properties of the materials were characterized by means of XRD, BET, SEM, TEM/SAED (selected-area electron diffraction), XPS and H2-TPR techniques. It is found that doping Sr2+ to La2CuO4 lattice enhanced the catalytic activity for methane combustion and the LaSrCuO4 catalyst derived from PEG is the best among the tested ones. It is concluded that factors, such as adsorbed oxygen species concentration, reducibility and surface area, determined the catalytic performance of such single-crystalline materials.展开更多
基金supported by the National Natural Science Foundation of China (No. 20973017 and 21077007)the Creative Research Foundation of Beijing University Technology (No. 00500054R4003)the Creative Research Team of Beijing Municipality (No. PHR201007105)
文摘Perovskite-like oxide La2-xSrxCuO4 (x = 0, 1) single crystallites with microrod-like morphologies and tetragonal crystal structures were prepared hydrothermally at 240 ℃ with poly(ethylene glycol) (PEG) or hexadecyltrimethyl ammonium bromide (CTAB) as a surfactant and after calcination at 850 ℃. The physicochemical properties of the materials were characterized by means of XRD, BET, SEM, TEM/SAED (selected-area electron diffraction), XPS and H2-TPR techniques. It is found that doping Sr2+ to La2CuO4 lattice enhanced the catalytic activity for methane combustion and the LaSrCuO4 catalyst derived from PEG is the best among the tested ones. It is concluded that factors, such as adsorbed oxygen species concentration, reducibility and surface area, determined the catalytic performance of such single-crystalline materials.