A triggered surge protective device is designed and its discharge characteristics axe studied. The experimental results show that the triggered surge protective device has excellent surge protective characteristics. W...A triggered surge protective device is designed and its discharge characteristics axe studied. The experimental results show that the triggered surge protective device has excellent surge protective characteristics. When the gap distance is 5 mm, p. d is 90 Pa.mm and without an active energy trigger circuit, the DC breakdown voltage of the triggered surge protective device is 2.32 kV and the pulse breakdown voltage is 5.75 kV. Therefore, the pulse voltage ratio, which is defined as the specific value of pulse breakdown voltage and DC breakdown voltage, is 2.48. With a semiconductor ZnO flashover trigger device and an active energy coupling trigger circuit, the pulse breakdown voltage can be reduced to 3.32 kV, the pulse voltage ratio is 1.43 and the response time is less than 100 ns. These results are helpful in laying a theoretical foundation for further studies on triggered surge protective devices.展开更多
A hollow cathode surge protective gap (HCSPG) was designed, and the discharge characteristics was investigated in an air and nitrogen gas environment. For both the gap spacing D and the hole diameter Ф of HCSPG of ...A hollow cathode surge protective gap (HCSPG) was designed, and the discharge characteristics was investigated in an air and nitrogen gas environment. For both the gap spacing D and the hole diameter Ф of HCSPG of 3 mm, the voltage protective value Up of HCSPG is about 3.5 kV and its converting time tc exceeds 100 ns at an air pressure from 10 Pa to 100 Pa. The maximum converting time tc from glow to arc discharging reaches 1600 ns at an air pressure of 100 Pa, while the minimum converting time tc is 120 ns at 10 Pa. For a triggered HCSPG, Up is reduced to about 1.6 kV while the converting time is 120 ns with a semiconductor trigger device and 50 ns with a dielectric porcelain trigger device under an air pressure of 100 Pa.展开更多
Protection distance of surge protective devices (SPDs) is an important problem in designing a good location scheme of SPDs in low voltage distribution systems for protecting electrical equipments against over- voltage...Protection distance of surge protective devices (SPDs) is an important problem in designing a good location scheme of SPDs in low voltage distribution systems for protecting electrical equipments against over- voltage caused by lightning stroke. The simplified lumped-parameter circuit model and the circuit method were used to study the protection distance problem of SPDs. The analytical solutions of the load voltage and general equations of the protection distance of SPDs under different load conditions were given. Simulation results of examples proved the validity of the proposed analytical method.展开更多
基金supported by National Natural Science Foundation of China(No.51177131)the New Century Talent Foundation of Ministry of Education of China(NCET-08-0438)
文摘A triggered surge protective device is designed and its discharge characteristics axe studied. The experimental results show that the triggered surge protective device has excellent surge protective characteristics. When the gap distance is 5 mm, p. d is 90 Pa.mm and without an active energy trigger circuit, the DC breakdown voltage of the triggered surge protective device is 2.32 kV and the pulse breakdown voltage is 5.75 kV. Therefore, the pulse voltage ratio, which is defined as the specific value of pulse breakdown voltage and DC breakdown voltage, is 2.48. With a semiconductor ZnO flashover trigger device and an active energy coupling trigger circuit, the pulse breakdown voltage can be reduced to 3.32 kV, the pulse voltage ratio is 1.43 and the response time is less than 100 ns. These results are helpful in laying a theoretical foundation for further studies on triggered surge protective devices.
基金supported by the Program for New Century Excellent Talents in University of China (NCET-08-0438)innovation fund of Xi'an Jiaotong University of China (2007S202)
文摘A hollow cathode surge protective gap (HCSPG) was designed, and the discharge characteristics was investigated in an air and nitrogen gas environment. For both the gap spacing D and the hole diameter Ф of HCSPG of 3 mm, the voltage protective value Up of HCSPG is about 3.5 kV and its converting time tc exceeds 100 ns at an air pressure from 10 Pa to 100 Pa. The maximum converting time tc from glow to arc discharging reaches 1600 ns at an air pressure of 100 Pa, while the minimum converting time tc is 120 ns at 10 Pa. For a triggered HCSPG, Up is reduced to about 1.6 kV while the converting time is 120 ns with a semiconductor trigger device and 50 ns with a dielectric porcelain trigger device under an air pressure of 100 Pa.
文摘Protection distance of surge protective devices (SPDs) is an important problem in designing a good location scheme of SPDs in low voltage distribution systems for protecting electrical equipments against over- voltage caused by lightning stroke. The simplified lumped-parameter circuit model and the circuit method were used to study the protection distance problem of SPDs. The analytical solutions of the load voltage and general equations of the protection distance of SPDs under different load conditions were given. Simulation results of examples proved the validity of the proposed analytical method.