期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Meta databases of steel frame buildings for surrogate modelling and machine learning-based feature importance analysis 被引量:1
1
作者 Delbaz Samadian Imrose B.Muhit +1 位作者 Annalisa Occhipinti Nashwan Dawood 《Resilient Cities and Structures》 2024年第1期20-43,共24页
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method... Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management. 展开更多
关键词 surrogate models Meta database Pushover analysis Steel moment resisting frames Sensitivity and explainability analyses Machine learning
下载PDF
DeepSurNet-NSGA II:Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots
2
作者 Sayat Ibrayev Batyrkhan Omarov +1 位作者 Arman Ibrayeva Zeinel Momynkulov 《Computers, Materials & Continua》 SCIE EI 2024年第10期229-249,共21页
This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective o... This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations. 展开更多
关键词 Multi-objective optimization genetic algorithm surrogate model deep learning walking robots
下载PDF
Multi-Objective Optimization for Hydrodynamic Performance of A Semi-Submersible FOWT Platform Based on Multi-Fidelity Surrogate Models and NSGA-Ⅱ Algorithms
3
作者 QIAO Dong-sheng MEI Hao-tian +3 位作者 QIN Jian-min TANG Guo-qiang LU Lin OU Jin-ping 《China Ocean Engineering》 CSCD 2024年第6期932-942,共11页
This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platfo... This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design. 展开更多
关键词 semi-submersible FOWT platforms Co-Kriging neural network algorithm multi-fidelity surrogate model NSGA-II multi-objective algorithm Pareto optimization
下载PDF
ROBUST OPTIMIZATION OF AERODYNAMIC DESIGN USING SURROGATE MODEL 被引量:4
4
作者 王宇 余雄庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期181-187,共7页
To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the ... To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties. 展开更多
关键词 surrogate model UNCERTAINTY AIRFOIL aerodynamic optimization
下载PDF
Optimization on the Crosswind Stability of Trains Using Neural Network Surrogate Model 被引量:4
5
作者 Le Zhang Tian Li +1 位作者 Jiye Zhang Ronghuan Piao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期208-224,共17页
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains u... Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered. 展开更多
关键词 SAFETY surrogate model OPTIMIZATION High-speed train CROSSWIND
下载PDF
Multi-objective optimisation of a vehicle energy absorption structure based on surrogate model 被引量:4
6
作者 谢素超 周辉 《Journal of Central South University》 SCIE EI CAS 2014年第6期2539-2546,共8页
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design... In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA &amp; REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM. 展开更多
关键词 railway vehicle energy-absorbing structure surrogate model Kriging method (KM) polynomial response surface method (PRSM) structure optimization
下载PDF
Random dynamic analysis of vertical train–bridge systems under small probability by surrogate model and subset simulation with splitting 被引量:11
7
作者 Huoyue Xiang Ping Tang +1 位作者 Yuan Zhang Yongle Li 《Railway Engineering Science》 2020年第3期305-315,共11页
The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge... The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples. 展开更多
关键词 Train–bridge system Ensemble method surrogate model Nonlinear autoregressive with exogenous input Subset simulation with splitting Small probability
下载PDF
Uncertain Multidisciplinary Design Optimization on Next Generation Subsea Production System by Using Surrogate Model and Interval Method 被引量:3
8
作者 WU Jia-hao ZHEN Xing-wei +1 位作者 LIU Gang HUANG Yi 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期609-621,共13页
The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which... The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former. 展开更多
关键词 next generation subsea production system multidisciplinary design optimization uncertain optimization collaborative optimization surrogate model interval method
下载PDF
Fluid Analysis and Structure Optimization of Impeller Based on Surrogate Model 被引量:1
9
作者 Huanwei Xu Wenzhang Wei +1 位作者 Hanjin He Xuerui Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期173-199,共27页
The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream re... The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream research direction of surrogate model technology,which can realize model fitting and global optimization of engineering problems by infilling criteria.Based on the idea of the adaptive surrogate model,this paper proposes an efficient global optimization algorithm based on the local remodeling method(EGO-LR),which aims at improving the accuracy and optimization efficiency of the model.The proposed algorithm firstly constructs the expectation improvement(EI)function in the local area and optimizes it to get the update points.Secondly,the obtained update points are added to the global region until the global accuracy of the model meets the requirements.Then the differential evolution algorithm is used for global optimization.Sixteen benchmark functions are used to compare the EGO-LR algorithm with the existing algorithms.The results show that the EGO-LR algorithm can quickly converge to the accuracy requirements of the model and find the optimal value efficiently when facing complex problems with many local extrema and large variable spaces.The proposed algorithm is applied to the optimization design of the structural parameter of the impeller,and the outflow field analysis of the impeller is realized through finite element analysis.The optimization with the maximum fluid pressure(MP value)of the impeller as the objective function is completed,which effectively reduces the pressure value of the impeller under load. 展开更多
关键词 The surrogate model EGO ADAPTIVE fluid analysis IMPELLER
下载PDF
Surrogate model-assisted interactive genetic algorithms with individual’s fuzzy and stochastic fitness 被引量:1
10
作者 Xiaoyan SUN, Dunwei GONG (School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China) 《控制理论与应用(英文版)》 EI 2010年第2期189-199,共11页
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi... We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency. 展开更多
关键词 Interactive genetic algorithms User fatigue surrogate model Directed fuzzy graph Fuzzy entropy
下载PDF
Optimization Design of High-speed Interior Permanent Magnet Motor with High Torque Performance Based on Multiple Surrogate Models 被引量:2
11
作者 Shengnan Wu Xiangde Sun Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期235-240,共6页
In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a comp... In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a complete optimization design method is proposed in this paper. The object of optimization design is a 15 kW、20000 r/min HSIPMM whose permanent magnets in rotor is segmented. Eight structural dimensions are selected as its optimization variables. After design of experiment(DOE), multiple surrogate models are fitted, a set of surrogate models with minimum error is selected by using error evaluation indexes to optimize, the NSGA-II algorithm is used to get the optimal solution. The optimal solution is verified by load test on a 15 kW, 20000 r/min HSIPMM prototype. This paper can be used as a reference for the optimization design of HSIPMM. 展开更多
关键词 High-speed interior permanent magnet motor Segmented magnets Multi-objective optimization Multiple surrogate models
下载PDF
Optimal Design of Electrical Machines Assisted by Hybrid Surrogate Model Based Algorithm 被引量:2
12
作者 Ziyan Ren Yuan Sun +2 位作者 Baoyang Peng Bin Xia Xia Li 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第1期13-19,共7页
In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model ... In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis. 展开更多
关键词 Electromagnetic problem global optimization hybrid surrogate model.
下载PDF
Deep Learning-Based Surrogate Model for Flight Load Analysis
13
作者 Haiquan Li Qinghui Zhang Xiaoqian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期605-621,共17页
Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We ... Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We mainly analyze the influence of Mach number,overload,angle of attack,elevator deflection,altitude,and other factors on the loads of key monitoring components,based on which input and output variables are set.The data used to train and validate the DL surrogate models are derived using aircraft flight load simulation results based on wind tunnel test data.According to the FLC features,a deep neural network(DNN)and a random forest(RF)are proposed to establish the surrogate models.The DNN meets the FLC accuracy requirement using rich data sources in the FLC;the RF can alleviate overfitting and evaluate the importance of flight parameters.Numerical experiments show that both the DNN-and RF-based surrogate models achieve high accuracy.The input variables importance analysis demonstrates that vertical overload and elevator deflection have a significant influence on the FLC.We believe that synthetic applications of these DL-based surrogate methods show a great promise in the field of FLC. 展开更多
关键词 Flight load surrogate model deep learning deep neural network random forest
下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
14
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
下载PDF
Establishment and Optimization of Ablation Surrogate Model for Thermal Protection Material
15
作者 Weizhen Pan Bo Gao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期477-493,共17页
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca... The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization. 展开更多
关键词 ablation surrogate model thermal protection material
下载PDF
Prediction of Aircraft's Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach
16
作者 Norazila Othman Masahiro Kanazaki 《Journal of Mechanics Engineering and Automation》 2014年第7期584-594,共11页
The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation metho... The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation method that is used to predict unknown functions based on the sampling data obtained by the design of experiments. This model can also be used to predict aerodynamic coefficients/derivatives using several measured points. The objective of this paper is to develop an efficient digital flight simulation by solving the equation of motion to predict the aerodynamics data using a surrogate model. Accordingly, there is a need to construct and investigate aerodynamic databases and compare the accuracy of the surrogate model with the exact solution, and hence solve the equation of motion for the flight simulation analysis. In this study, sample datas for models are acquired from the USAF Stability and Control DATCOM, and a database is constructed for two input variables (the angle of attack and Mach number), along with two derivatives of the X-force axis and three derivatives for the Z-force axis and pitching moment. Furthermore, a comparison of the value predicted by the Kriging model and the exact solution shows that its flight analysis prediction ability makes it possible to use the surrogate model in future analyses. 展开更多
关键词 surrogate model Kriging method equation of motion standard dynamics model.
下载PDF
A systematic framework of constructing surrogate model for slider track peeling strength prediction 被引量:1
17
作者 DONG XingJian CHEN Qian +3 位作者 LIU WenBo WANG Dong PENG ZhiKe MENG Guang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第10期3261-3274,共14页
Peeling strength can comprehensively reflect slider track safety and is crucial in car seat safety assessments.Current methods for determining slider peeling strength are primarily physical testing and numerical simul... Peeling strength can comprehensively reflect slider track safety and is crucial in car seat safety assessments.Current methods for determining slider peeling strength are primarily physical testing and numerical simulation.However,these methods encounter the potential challenges of high costs and overlong time consumption which have not been adequately addressed.Therefore,the efficient and low-cost surrogate model emerges as a promising solution.Nevertheless,currently used surrogate models suffer from inefficiencies and complexity in data sampling,lack of robustness in local model predictions,and isolation between data sampling and model prediction.To overcome these challenges,this paper aims to set up a systematic framework for slider track peeling strength prediction,including sensitivity analysis,dataset sampling,and model prediction.Specifically,the interpretable linear regression is performed to identify the sensitivity of various geometric variables to peeling strength.Based on the variable sensitivity,a distance metric is constructed to measure the disparity of different variable groups.Then,the sparsity-targeted sampling(STS)is proposed to formulate a representative dataset.Finally,the sequentially selected local weighted linear regression(SLWLR)is designed to achieve accurate track peeling strength prediction.Additionally,a quantitative cost assessment of the supplementary dataset is proposed by utilizing the minimum adjacent sample distance as a mediator.Experimental results validate the efficacy of sequential selection and the weighting mechanism in enhancing localization robustness.Furthermore,the proposed SLWLR method surpasses similar approaches and other common surrogate methods in terms of prediction performance and data quantity requirements,achieving an average absolute error of 3.3 kN in the simulated test dataset. 展开更多
关键词 slider track peeling strength surrogate model sensitivity analysis data sampling local weighted linear regression
原文传递
Establishment and application of a surrogate model for human Ebola virus disease in BSL-2 laboratory 被引量:1
18
作者 Wanying Yang Wujian Li +9 位作者 Wujie Zhou Shen Wang Weiqi Wang Zhenshan Wang Na Feng Tiecheng Wang Ying Xie Yongkun Zhao Feihu Yan Xianzhu Xia 《Virologica Sinica》 SCIE CAS CSCD 2024年第3期434-446,共13页
The Ebola virus(EBOV)is a member of the Orthoebolavirus genus,Filoviridae family,which causes severe hemorrhagic diseases in humans and non-human primates(NHPs),with a case fatality rate of up to 90%.The development o... The Ebola virus(EBOV)is a member of the Orthoebolavirus genus,Filoviridae family,which causes severe hemorrhagic diseases in humans and non-human primates(NHPs),with a case fatality rate of up to 90%.The development of countermeasures against EBOV has been hindered by the lack of ideal animal models,as EBOV requires handling in biosafety level(BSL)-4 facilities.Therefore,accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV.In this study,a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein(VSV-EBOV/GP)was constructed and applied as a surrogate virus,establishing a lethal infection in hamsters.Following infection with VSV-EBOV/GP,3-week-old female Syrian hamsters exhibited disease signs such as weight loss,multi-organ failure,severe uveitis,high viral loads,and developed severe systemic diseases similar to those observed in human EBOV patients.All animals succumbed at 2–3 days post-infection(dpi).Histopathological changes indicated that VSV-EBOV/GP targeted liver cells,suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV(WT EBOV).Notably,the pathogenicity of the VSV-EBOV/GP was found to be species-specific,age-related,gender-associated,and challenge route-dependent.Subsequently,equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model.Overall,this surrogate model represents a safe,effective,and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions,which would accelerate technological advances and breakthroughs in confronting Ebola virus disease. 展开更多
关键词 Ebola virus(EBOV) Recombinant vesicular stomatitis virus PATHOGENICITY Syrian hamster surrogate models Vaccine evaluation and drug screening
原文传递
Efficient reliability analysis via a nonlinear autoregressive multi-fidelity surrogate model and active learning
19
作者 Yifan LI Yongyong XIANG +1 位作者 Luojie SHI Baisong PAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第11期922-937,共16页
For complex engineering problems,multi-fidelity modeling has been used to achieve efficient reliability analysis by leveraging multiple information sources.However,most methods require nested training samples to captu... For complex engineering problems,multi-fidelity modeling has been used to achieve efficient reliability analysis by leveraging multiple information sources.However,most methods require nested training samples to capture the correlation between different fidelity data,which may lead to a significant increase in low-fidelity samples.In addition,it is difficult to build accurate surrogate models because current methods do not fully consider the nonlinearity between different fidelity samples.To address these problems,a novel multi-fidelity modeling method with active learning is proposed in this paper.Firstly,a nonlinear autoregressive multi-fidelity Kriging(NAMK)model is used to build a surrogate model.To avoid introducing redundant samples in the process of NAMK model updating,a collective learning function is then developed by a combination of a U-learning function,the correlation between different fidelity samples,and the sampling cost.Furthermore,a residual model is constructed to automatically generate low-fidelity samples when high-fidelity samples are selected.The efficiency and accuracy of the proposed method are demonstrated using three numerical examples and an engineering case. 展开更多
关键词 Reliability analysis Multi-fidelity surrogate model Active learning NONLINEARITY Residual model
原文传递
Digital twin dynamic-polymorphic uncertainty surrogate model generation using a sparse polynomial chaos expansion with application in aviation hydraulic pump
20
作者 Dong LIU Shaoping WANG +1 位作者 Jian SHI Di LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期231-244,共14页
Full lifecycle high fidelity digital twin is a complex model set contains multiple functions with high dimensions and multiple variables.Quantifying uncertainty for such complex models often encounters time-consuming ... Full lifecycle high fidelity digital twin is a complex model set contains multiple functions with high dimensions and multiple variables.Quantifying uncertainty for such complex models often encounters time-consuming challenges,as the number of calculated terms increases exponentially with the dimensionality of the input.This paper based on the multi-stage model and high time consumption problem of digital twins,proposed a sparse polynomial chaos expansions method to generate the digital twin dynamic-polymorphic uncertainty surrogate model,striving to strike a balance between the accuracy and time consumption of models used for digital twin uncertainty quantification.Firstly,an analysis and clarification were conducted on the dynamic-polymorphic uncertainty of the full lifetime running digital twins.Secondly,a sparse polynomial chaos expansions model response was developed based on partial least squares technology with the effectively quantified and selected basis polynomials which sorted by significant influence.In the end,the accuracy of the proxy model is evaluated by leave-one-out cross-validation.The effectiveness of this method was verified through examples,and the results showed that it achieved a balance between maintaining model accuracy and complexity. 展开更多
关键词 Digital Twin Uncertainty surrogate model Dynamic-polymorphic uncertainty Sparse polynomial chaos expansions Aviation hydraulic pump
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部