Multiple-energy aluminium (AI+) implantation into 4H-SiC (0001) epilayer and activation anneal with a graphite encapsnlation layer were investigated in this paper. Measurements showed that the implanted Ak+ box ...Multiple-energy aluminium (AI+) implantation into 4H-SiC (0001) epilayer and activation anneal with a graphite encapsnlation layer were investigated in this paper. Measurements showed that the implanted Ak+ box doping profile was formed and a high ion activation ratio of 78% was achieved by 40 rain annealing at 1600℃ using a horizontal chemical vapor deposition (CVD) reactor. The step bunching effect associated with the high temper:lture post implantation activation annealing (PIA) process was dramatically suppressed by using the graphite encapsulation layer. And a flat and smooth surface with a small average surface roughness (RMS) value of around 1.16 nm was achieved for the implanted 4H-SiC after the PIA process. It was demonstrated that this surface protection technique is a quite effective process for 4H-SiC power devices fabrication.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61006060, 61176070)
文摘Multiple-energy aluminium (AI+) implantation into 4H-SiC (0001) epilayer and activation anneal with a graphite encapsnlation layer were investigated in this paper. Measurements showed that the implanted Ak+ box doping profile was formed and a high ion activation ratio of 78% was achieved by 40 rain annealing at 1600℃ using a horizontal chemical vapor deposition (CVD) reactor. The step bunching effect associated with the high temper:lture post implantation activation annealing (PIA) process was dramatically suppressed by using the graphite encapsulation layer. And a flat and smooth surface with a small average surface roughness (RMS) value of around 1.16 nm was achieved for the implanted 4H-SiC after the PIA process. It was demonstrated that this surface protection technique is a quite effective process for 4H-SiC power devices fabrication.