Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aic...Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in To generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.展开更多
Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The preva...Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The prevalence of MDR strains was determined by using general antimicrobial susceptibility data collected from 3 hospital laboratories. The susceptibility of some isolates to usual antibiotics was processed by agar diffusion method with standard E. coli ATCC8739 and standard antibiotics discs as controls. The tested antibiotics were ampicillin, ceftriaxone, gentamicin, chloramphenicol and ciprofloxacin. Results: At the 3 hospitals, 758 tests were realized in urine, pus, stool, FCV, blood, LCR, split and FU specimens;46 strains were unidentified and 712 strains were identified. Of 712 identified strains, 223 (31.4%) were MDR or XDR strains including Escherichia coli, Klebsiella pneumoniae, Enterobacter, Proteus mirabilis, Salmonella enterica, Pseudomonas aeruginosa, Citrobacter freundii, Morganella morganii, Enterococcus faecalis and E. faecium, Neisseria gonorrohoae, Staphylococcus aureus, coagulase-negative, staphylococci, Streptococcus pneumoniae and Streptococcus pyogenes. Of the infected patients, 36 (21.5%) children were under 16 years and 188 (78.5%) adults were predominately women (58.5%). The susceptibility test showed that all strains but S. aureus were resistant to ampicillin and amoxicillin and ciprofloxacin. Gentamicin, ceftriaxone, and chloramphenicol remain partially active (27% - 80%) against P. mirabilis, E. coli and P. aeruginosa. The resistance is more likely related to strain mutation than to pharmaceutical quality of the antibiotics prescribed. Conclusion: Both data from hospital laboratories and in vitro post-testing findings confirmed the ongoing elevated prevalence of MDR strains in Bukavu. The causes of antibiotic misuse and socio-economic determinants of the phenomenon of resistance should be scrutinized in order to take adequate strategies in the prospective of establishing an effective control system against this threat to overall health. The results of this work on MDR profiles have various implications for the management of infectious diseases. It provides indicators for the surveillance of antimicrobial resistance, practical guidelines for antibiotic susceptibility testing in biomedical laboratories, and guidance for antibiotic therapy.展开更多
Unrestrained anti-microbial resistance (AMR) among bacterial pathogens has made the management and treatment of post-operative wound infections difficult. This study assessed the current AMR patterns of bacterial isol...Unrestrained anti-microbial resistance (AMR) among bacterial pathogens has made the management and treatment of post-operative wound infections difficult. This study assessed the current AMR patterns of bacterial isolates in post-operative wound infections in a tertiary care hospital in Kathmandu,Nepal. Pus swabs collected from post-operative wound infections and submitted for culture and sensitivity were included in this study. Isolation and identification of the organism was done by standard microbiological methods. Antibiotic susceptibility test was performed by Kirby Bauer disc diffusion method and result was interpreted as per National Committee for Clinical Laboratory Standards (NCCLS) guide lines. Of the 120 pus swabs processed for culture, 96 showed bacterial growth. Staphylococcus aureus 36 (37.5%) was the predominant gram positive isolate and Escherichia coli 24 (25%) was the major gram negative isolate .The infection was most prevalent in the age group 20-40 years. All S. aureus isolates were sensitive to aminoglycosides and vancomycin. Out of 36 S. aureus, 15 (41.66%) isolates were methicillin resistant S. aureus (MRSA). Staphylococcus epidermidis showed high resistance (50%-100%) to all antibiotics but were sensitive to vancomycin. All gram negative isolates showed high resistance against cephalexin (75%-100%) and ceftriaxone (25%-100%). Overall multi-drug resistant isolates were 66.7%. A high level of AMR was observed in gram negative bacterial isolates. Rational use of antibiotics and a regular monitoring of AMR patterns in post-operative wound infections are essential and mandatory to avert further emergence and spread of anti-microbial resistance among bacterial pathogens.展开更多
A laboratory information system (LIS) established in a microbiology department has the potential to play an important role in the quality of microbiology data such as culture of blood, urine, stool, pus swab samples e...A laboratory information system (LIS) established in a microbiology department has the potential to play an important role in the quality of microbiology data such as culture of blood, urine, stool, pus swab samples etc. Such data could be effectively utilised to measure the burden of antimicrobial resistance among patients presented to various hospitals and clinics with an episode of an infectious illness of bacterial origin. A variety of clinical and epidemiological investigations are conducted using culture data and the presence of an electronic system such as LIS enhances such investigations and improves the reliability of measures of antimicrobial resistance owing to improved data quality as well as completeness of data gathered as opposed to paper based system. Therefore to improve surveillance of antimicrobial resistance in South Africa, there is a need to reinforce the functionality of the LIS in both public and private microbiology laboratories as this will help to improve internal quality control methodologies.展开更多
Heavy metals may induce bacterial antibiotic resistance and affect their growth in the ecosystem.In this study,we aim to determine bacterial growth and antibiotic resistance in the pressure of heavy metals.Observed th...Heavy metals may induce bacterial antibiotic resistance and affect their growth in the ecosystem.In this study,we aim to determine bacterial growth and antibiotic resistance in the pressure of heavy metals.Observed the changing morphology by gram staining was checked for bacterial toleration with heavy metal,developing of the colony form unit(CFU)was analysed bacterial kinetic growths and their biofilm formation.The disk diffusion test was used to perform bacterial susceptibility profiles with Ceftazidime(30μg),Ceftriaxone(30μg),Colistin sulfate(10μg),Meropenem or Imipenem(10μg),Ciprofloxacin(5μg)and Azithromycin(15μg)and the CLSI was applied for interpreting the data.The bacterial morphology remarkably changed from normal to short,round shape at a high concentration of heavy metals after 1 month.Their changing shape adapted to heavy metals by survival growing and resisted to Azithromycin,Ciprofloxacin,and Colistin without biofilm formation after 1 month,that was continued increasing after 2 months.The bacterial growth and antibiotic resistance were significant differences between provinces(P=0.01),type of bacterial species,and concentration of heavy metals.These results indicate that heavy metals are a crucial factor-driven for enhancing bacterial adaptation in pollution water resources and inducing their antimicrobial resistance in the aquatic environment.展开更多
Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolera...Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.展开更多
Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacteria...Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacterial pathogen was carried out on a total of 722 patients that were admitted to the ICU of Fatmawati Hospital Jakarta Indonesia during January 2009 to March 2010. All bacteria were identified by standard microbiologic methods,and(heir antibiotic susceptibility testing was performed using disk diffusion method.Results:Specimens were collected from 385 patients who were given antimicrobial treatment,of which 249(64.68%) were cultured positive and 136(35.32%) were negative.The most predominant isolate was Pseudomonas aeruginosa(P.aeruginosa)(26.5%) followed by Klebsiella pneumoniae(K.pneumoniae)(15.3%) and Staphylococcus epidermidis(14.9%).P.aeruginosa isolates showed high rate of resistance to cephalexin(95.3%),cefotaxime(64.1%),and ceftriaxone(60.9%).Amikacin was the most effective(84.4%) antibiotic against P.aeruginosa followed by imipenem(81.2%),and meropenem(75.0%).K.pneumoniae showed resistance to cephalexin(86.5%),ceftriaxone(75.7%),ceftazidime(73.0%),cefpirome(73.0%) and cefotaxime(67.9%),respectively.Conclusions:Most bacteria isolated from ICU of Fatmawati Hospital Jakarta Indonesia were resistant to the third generation of cephalosporins,and quinolone antibiotics.Regular surveillance of antibiotic susceptibility pallerns is very important for setting orders to guide the clinician in choosing empirical or directed therapy of infected patients.展开更多
Objective:To determine the antimicrobial susceptibility and serotypes of Neisseria(N.)meningitidis and Streptococcus(S.)pneumoniae in Sri Lankan patients.Methods:We retrospectively analyzed 11 blood culture specimens ...Objective:To determine the antimicrobial susceptibility and serotypes of Neisseria(N.)meningitidis and Streptococcus(S.)pneumoniae in Sri Lankan patients.Methods:We retrospectively analyzed 11 blood culture specimens from suspected patients with invasive meningococcal disease and 26 S.pneumoniae clinical isolates.We tested 6 antimicrobials against N.meningitidis and 12 antimicrobials against S.pneumoniae.Meningococcal serogroup was determined by realtime PCR and Quellung serotyping was used for pneumococcal analysis.Results:N.meningitidis serogroup B was the most common in this study.Intermediate-susceptibility to penicillin was seen in 75.0%(6/8)of strains.Susceptibility to ciprofloxacin,levofloxacin and cotrimoxazole was 62.5%(5/8),62.5%(5/8)and 87.5%(7/8),respectively.Excellent susceptibility was seen in cefotaxime and meropenem.In S.pneumoniae,the most common serotype was 19F in both invasive and non-invasive pneumococcal diseases.The majority of strains showed multidrug resistance.Penicillin non-susceptibility in non-meningeal strains were 13.6%and all meningeal strains were penicillin resistant.Erythromycin was highly resistant in both groups.Amoxicillin showed excellent susceptibility in non-invasive pneumococcal diseases strains.Linezolid,levofloxacin and vancomycin showed 100.0%susceptibility in all pneumococcal isolates.Conclusions:Implementation of vaccines should be considered,especially for children and high-risk populations.This may contribute to reducing pneumococcal and meningococcal invasive disease burden and help prevent emergence of antimicrobial resistant strains.展开更多
BACKGROUND With the widespread use of antimicrobial drugs,bacterial resistance has become a significant problem,posing a serious threat to public health.The prevalence of clinical infection strains in hospitals and th...BACKGROUND With the widespread use of antimicrobial drugs,bacterial resistance has become a significant problem,posing a serious threat to public health.The prevalence of clinical infection strains in hospitals and their drug sensitivities are key to the appropriate use of antibiotics in clinical practice.AIM To identify prevalent bacteria and their antibiotic resistance profiles in a hospital setting,thereby guiding effective antibiotic usage by clinicians.METHODS Specimens from across the institution were collected by the microbiology laboratory.The VITEK 2 compact fully automatic analyzer was used for bacterial identification and antibiotic sensitivity testing,and the WHONET5.6 software was utilized for statistical analysis.RESULTS A total of 12062 bacterial strains of key monitoring significance were detected.Staphylococcus aureus demonstrated widespread resistance to penicillin,but none of the strains were resistant to vancomycin or linezolid.Moreover,219 strains of methicillin-resistant coagulase-negative staphylococci and 110 strains of methicillin-resistant Staphylococcus aureus were detected.Enterococcus faecalis showed moderate resistance to the third-generation quinolones ciprofloxacin and levofloxacin,but its resistance to nitrofurantoin and tetracycline was low.Enterococcus faecium displayed significantly lower resistance to third-and fourthgeneration quinolones than Enterococcus faecalis.The resistance of two key monitoring strains,Escherichia coli and Klebsiella pneumoniae,to piperacillin/tazobactam was 5%-8%.However,none of the Escherichia coli and Klebsiella pneumoniae strains were resistant to meropenem.The resistance of Acinetobacter baumannii to piperacillin/sulbactam was nearly 90%.Nonetheless,the resistance to tigecycline was low,and Pseudomonas aeruginosa demonstrated minimal resistance in the antibiotic sensitivity test,maintaining a resistance of<10%to the cephalosporin antibiotics cefotetan and cefoperazone over the last 6 years.The resistance to amikacin remained at 0.2%over the past 3 years.CONCLUSION Our hospital’s overall antibiotic resistance rate was relatively stable from 2017 to 2022.The detection rates of key monitoring strains are reported quarterly and their resistance dynamics are monitored and communicated to the entire hospital,which can guide clinical antibiotic selection.展开更多
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery.Recent developments in advanced antimicrobial nanotechnologies provide num...Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery.Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms.With tunable physicochemical properties,nanomaterials can be designed to be bactericidal,antifouling,immunomodulating,and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy.Despite its substantial advancement,an important,but under-explored area,is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies.This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.展开更多
Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection.These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates.They are expl...Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection.These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates.They are exploited as antibiofilm agents and antimicrobial adjuvants while rarely inducing bacterial resistance,making them an invaluable asset in the era of antibiotic resistance.Numerous depolymerases have been investigated preclinically,with evidence indicating that depolymerases with appropriate dose regimens can safely and effectively combat different multidrug-resistant pathogens in animal infection models.Additionally,some formulation approaches have been developed for improved stability and activity of depolymerases.However,depolymerase formulation is limited to liquid dosage form and remains in its infancy,posing a significant hurdle to their clinical translation,compounded by challenges in their applicability and manufacturing.Future development must address these obstacles for clinical utility.Here,after unravelling the history,diversity,and therapeutic use of depolymerases,we summarized the preclinical efficacy and existing formulation findings of recombinant depolymerases.Finally,the challenges and perspectives of depolymerases as therapeutics for humans were assessed to provide insights for their further development.展开更多
基金supported by the Important National Science & Technology Specific Projects for Breeding New Transgenic Varieties in China (Grant No. 2008ZX08010-004)
文摘Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in To generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.
文摘Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The prevalence of MDR strains was determined by using general antimicrobial susceptibility data collected from 3 hospital laboratories. The susceptibility of some isolates to usual antibiotics was processed by agar diffusion method with standard E. coli ATCC8739 and standard antibiotics discs as controls. The tested antibiotics were ampicillin, ceftriaxone, gentamicin, chloramphenicol and ciprofloxacin. Results: At the 3 hospitals, 758 tests were realized in urine, pus, stool, FCV, blood, LCR, split and FU specimens;46 strains were unidentified and 712 strains were identified. Of 712 identified strains, 223 (31.4%) were MDR or XDR strains including Escherichia coli, Klebsiella pneumoniae, Enterobacter, Proteus mirabilis, Salmonella enterica, Pseudomonas aeruginosa, Citrobacter freundii, Morganella morganii, Enterococcus faecalis and E. faecium, Neisseria gonorrohoae, Staphylococcus aureus, coagulase-negative, staphylococci, Streptococcus pneumoniae and Streptococcus pyogenes. Of the infected patients, 36 (21.5%) children were under 16 years and 188 (78.5%) adults were predominately women (58.5%). The susceptibility test showed that all strains but S. aureus were resistant to ampicillin and amoxicillin and ciprofloxacin. Gentamicin, ceftriaxone, and chloramphenicol remain partially active (27% - 80%) against P. mirabilis, E. coli and P. aeruginosa. The resistance is more likely related to strain mutation than to pharmaceutical quality of the antibiotics prescribed. Conclusion: Both data from hospital laboratories and in vitro post-testing findings confirmed the ongoing elevated prevalence of MDR strains in Bukavu. The causes of antibiotic misuse and socio-economic determinants of the phenomenon of resistance should be scrutinized in order to take adequate strategies in the prospective of establishing an effective control system against this threat to overall health. The results of this work on MDR profiles have various implications for the management of infectious diseases. It provides indicators for the surveillance of antimicrobial resistance, practical guidelines for antibiotic susceptibility testing in biomedical laboratories, and guidance for antibiotic therapy.
文摘Unrestrained anti-microbial resistance (AMR) among bacterial pathogens has made the management and treatment of post-operative wound infections difficult. This study assessed the current AMR patterns of bacterial isolates in post-operative wound infections in a tertiary care hospital in Kathmandu,Nepal. Pus swabs collected from post-operative wound infections and submitted for culture and sensitivity were included in this study. Isolation and identification of the organism was done by standard microbiological methods. Antibiotic susceptibility test was performed by Kirby Bauer disc diffusion method and result was interpreted as per National Committee for Clinical Laboratory Standards (NCCLS) guide lines. Of the 120 pus swabs processed for culture, 96 showed bacterial growth. Staphylococcus aureus 36 (37.5%) was the predominant gram positive isolate and Escherichia coli 24 (25%) was the major gram negative isolate .The infection was most prevalent in the age group 20-40 years. All S. aureus isolates were sensitive to aminoglycosides and vancomycin. Out of 36 S. aureus, 15 (41.66%) isolates were methicillin resistant S. aureus (MRSA). Staphylococcus epidermidis showed high resistance (50%-100%) to all antibiotics but were sensitive to vancomycin. All gram negative isolates showed high resistance against cephalexin (75%-100%) and ceftriaxone (25%-100%). Overall multi-drug resistant isolates were 66.7%. A high level of AMR was observed in gram negative bacterial isolates. Rational use of antibiotics and a regular monitoring of AMR patterns in post-operative wound infections are essential and mandatory to avert further emergence and spread of anti-microbial resistance among bacterial pathogens.
文摘A laboratory information system (LIS) established in a microbiology department has the potential to play an important role in the quality of microbiology data such as culture of blood, urine, stool, pus swab samples etc. Such data could be effectively utilised to measure the burden of antimicrobial resistance among patients presented to various hospitals and clinics with an episode of an infectious illness of bacterial origin. A variety of clinical and epidemiological investigations are conducted using culture data and the presence of an electronic system such as LIS enhances such investigations and improves the reliability of measures of antimicrobial resistance owing to improved data quality as well as completeness of data gathered as opposed to paper based system. Therefore to improve surveillance of antimicrobial resistance in South Africa, there is a need to reinforce the functionality of the LIS in both public and private microbiology laboratories as this will help to improve internal quality control methodologies.
文摘Heavy metals may induce bacterial antibiotic resistance and affect their growth in the ecosystem.In this study,we aim to determine bacterial growth and antibiotic resistance in the pressure of heavy metals.Observed the changing morphology by gram staining was checked for bacterial toleration with heavy metal,developing of the colony form unit(CFU)was analysed bacterial kinetic growths and their biofilm formation.The disk diffusion test was used to perform bacterial susceptibility profiles with Ceftazidime(30μg),Ceftriaxone(30μg),Colistin sulfate(10μg),Meropenem or Imipenem(10μg),Ciprofloxacin(5μg)and Azithromycin(15μg)and the CLSI was applied for interpreting the data.The bacterial morphology remarkably changed from normal to short,round shape at a high concentration of heavy metals after 1 month.Their changing shape adapted to heavy metals by survival growing and resisted to Azithromycin,Ciprofloxacin,and Colistin without biofilm formation after 1 month,that was continued increasing after 2 months.The bacterial growth and antibiotic resistance were significant differences between provinces(P=0.01),type of bacterial species,and concentration of heavy metals.These results indicate that heavy metals are a crucial factor-driven for enhancing bacterial adaptation in pollution water resources and inducing their antimicrobial resistance in the aquatic environment.
基金supported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.
文摘Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacterial pathogen was carried out on a total of 722 patients that were admitted to the ICU of Fatmawati Hospital Jakarta Indonesia during January 2009 to March 2010. All bacteria were identified by standard microbiologic methods,and(heir antibiotic susceptibility testing was performed using disk diffusion method.Results:Specimens were collected from 385 patients who were given antimicrobial treatment,of which 249(64.68%) were cultured positive and 136(35.32%) were negative.The most predominant isolate was Pseudomonas aeruginosa(P.aeruginosa)(26.5%) followed by Klebsiella pneumoniae(K.pneumoniae)(15.3%) and Staphylococcus epidermidis(14.9%).P.aeruginosa isolates showed high rate of resistance to cephalexin(95.3%),cefotaxime(64.1%),and ceftriaxone(60.9%).Amikacin was the most effective(84.4%) antibiotic against P.aeruginosa followed by imipenem(81.2%),and meropenem(75.0%).K.pneumoniae showed resistance to cephalexin(86.5%),ceftriaxone(75.7%),ceftazidime(73.0%),cefpirome(73.0%) and cefotaxime(67.9%),respectively.Conclusions:Most bacteria isolated from ICU of Fatmawati Hospital Jakarta Indonesia were resistant to the third generation of cephalosporins,and quinolone antibiotics.Regular surveillance of antibiotic susceptibility pallerns is very important for setting orders to guide the clinician in choosing empirical or directed therapy of infected patients.
文摘Objective:To determine the antimicrobial susceptibility and serotypes of Neisseria(N.)meningitidis and Streptococcus(S.)pneumoniae in Sri Lankan patients.Methods:We retrospectively analyzed 11 blood culture specimens from suspected patients with invasive meningococcal disease and 26 S.pneumoniae clinical isolates.We tested 6 antimicrobials against N.meningitidis and 12 antimicrobials against S.pneumoniae.Meningococcal serogroup was determined by realtime PCR and Quellung serotyping was used for pneumococcal analysis.Results:N.meningitidis serogroup B was the most common in this study.Intermediate-susceptibility to penicillin was seen in 75.0%(6/8)of strains.Susceptibility to ciprofloxacin,levofloxacin and cotrimoxazole was 62.5%(5/8),62.5%(5/8)and 87.5%(7/8),respectively.Excellent susceptibility was seen in cefotaxime and meropenem.In S.pneumoniae,the most common serotype was 19F in both invasive and non-invasive pneumococcal diseases.The majority of strains showed multidrug resistance.Penicillin non-susceptibility in non-meningeal strains were 13.6%and all meningeal strains were penicillin resistant.Erythromycin was highly resistant in both groups.Amoxicillin showed excellent susceptibility in non-invasive pneumococcal diseases strains.Linezolid,levofloxacin and vancomycin showed 100.0%susceptibility in all pneumococcal isolates.Conclusions:Implementation of vaccines should be considered,especially for children and high-risk populations.This may contribute to reducing pneumococcal and meningococcal invasive disease burden and help prevent emergence of antimicrobial resistant strains.
文摘BACKGROUND With the widespread use of antimicrobial drugs,bacterial resistance has become a significant problem,posing a serious threat to public health.The prevalence of clinical infection strains in hospitals and their drug sensitivities are key to the appropriate use of antibiotics in clinical practice.AIM To identify prevalent bacteria and their antibiotic resistance profiles in a hospital setting,thereby guiding effective antibiotic usage by clinicians.METHODS Specimens from across the institution were collected by the microbiology laboratory.The VITEK 2 compact fully automatic analyzer was used for bacterial identification and antibiotic sensitivity testing,and the WHONET5.6 software was utilized for statistical analysis.RESULTS A total of 12062 bacterial strains of key monitoring significance were detected.Staphylococcus aureus demonstrated widespread resistance to penicillin,but none of the strains were resistant to vancomycin or linezolid.Moreover,219 strains of methicillin-resistant coagulase-negative staphylococci and 110 strains of methicillin-resistant Staphylococcus aureus were detected.Enterococcus faecalis showed moderate resistance to the third-generation quinolones ciprofloxacin and levofloxacin,but its resistance to nitrofurantoin and tetracycline was low.Enterococcus faecium displayed significantly lower resistance to third-and fourthgeneration quinolones than Enterococcus faecalis.The resistance of two key monitoring strains,Escherichia coli and Klebsiella pneumoniae,to piperacillin/tazobactam was 5%-8%.However,none of the Escherichia coli and Klebsiella pneumoniae strains were resistant to meropenem.The resistance of Acinetobacter baumannii to piperacillin/sulbactam was nearly 90%.Nonetheless,the resistance to tigecycline was low,and Pseudomonas aeruginosa demonstrated minimal resistance in the antibiotic sensitivity test,maintaining a resistance of<10%to the cephalosporin antibiotics cefotetan and cefoperazone over the last 6 years.The resistance to amikacin remained at 0.2%over the past 3 years.CONCLUSION Our hospital’s overall antibiotic resistance rate was relatively stable from 2017 to 2022.The detection rates of key monitoring strains are reported quarterly and their resistance dynamics are monitored and communicated to the entire hospital,which can guide clinical antibiotic selection.
基金funding support from the NUS Presidential Young Professorship and NUS Technological Innovations in Infectious Diseases Translational Research.
文摘Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery.Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms.With tunable physicochemical properties,nanomaterials can be designed to be bactericidal,antifouling,immunomodulating,and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy.Despite its substantial advancement,an important,but under-explored area,is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies.This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
基金This work was supported by the University Grants Committee,Hong Kong SAR Government(No.14112921,China).The support of HKPFS from the University Grants Committee to HonglanWang was greatly acknowledged.
文摘Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection.These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates.They are exploited as antibiofilm agents and antimicrobial adjuvants while rarely inducing bacterial resistance,making them an invaluable asset in the era of antibiotic resistance.Numerous depolymerases have been investigated preclinically,with evidence indicating that depolymerases with appropriate dose regimens can safely and effectively combat different multidrug-resistant pathogens in animal infection models.Additionally,some formulation approaches have been developed for improved stability and activity of depolymerases.However,depolymerase formulation is limited to liquid dosage form and remains in its infancy,posing a significant hurdle to their clinical translation,compounded by challenges in their applicability and manufacturing.Future development must address these obstacles for clinical utility.Here,after unravelling the history,diversity,and therapeutic use of depolymerases,we summarized the preclinical efficacy and existing formulation findings of recombinant depolymerases.Finally,the challenges and perspectives of depolymerases as therapeutics for humans were assessed to provide insights for their further development.