A new bioreactor on the basis of a dynamic fluidized bed was designed, which combines advantages of the fluidized bed and a biological contactor. The experiments of start-up, nor- mal operation and parameter adjustmen...A new bioreactor on the basis of a dynamic fluidized bed was designed, which combines advantages of the fluidized bed and a biological contactor. The experiments of start-up, nor- mal operation and parameter adjustment are carried out. The re- sults show that the bioreactor can be quickly started up in the condition that the fill is 50%, the hydraulic retention time is 72 min, aerate speed is 2.5 m3/h, rotation-cage rotated speed is 1.5 r/min, and the removal rates of chemical oxygen demand (CODCr) and Ammonia nitrogen (NH3-N) are 75.34% and 80.98% respec- tively. The influence of the operation parameter on removal rates of the bioreactor is analyzed, and an appropriate operation pa- rameter is provided.展开更多
Tertiary denitrification is an effective method for nitrogen removal from wastewater. A pilot-scale biofilter packed with suspended carriers was operated for tertiary denitrification with ethanol as the organic carbon...Tertiary denitrification is an effective method for nitrogen removal from wastewater. A pilot-scale biofilter packed with suspended carriers was operated for tertiary denitrification with ethanol as the organic carbon source. Long-term performance, biokinetics of denitrification and biofilm growth were evaluated under filtration velocities of 6, 10 and 14 m/hr. The pilot-scale biofilter removed nitrate from the secondary effluent effectively, and the nitrate nitrogen(NO_3-N) removal percentage was 82%, 78% and 55% at the filtration velocities of 6, 10 and 14 m/hr, respectively. At the filtration velocities of 6 and 10 m/hr, the nitrate removal loading rate increased with increasing influent nitrate loading rates, while at the filtration velocity of 14 m/hr, the removal loading rate and the influent loading rate were uncorrelated.During denitrification, the ratio of consumed chemical oxygen demand to removed NO_3-N was 3.99-4.52 mg/mg. Under the filtration velocities of 6, 10 and 14 m/hr, the maximum denitrification rate was 3.12, 4.86 and 4.42 g N/(m^2·day), the half-saturation constant was 2.61, 1.05 and 1.17 mg/L, and the half-order coefficient was 0.22, 0.32 and 0.24(mg/L)1/2/min,respectively. The biofilm biomass increased with increasing filtration velocity and was 2845,5124 and 7324 mg VSS/m^2 at filtration velocities of 6, 10 and 14 m/hr, respectively. The highest biofilm density was 44 mg/cm^3 at the filtration velocity of 14 m/hr. Due to the low influent loading rate, biofilm biomass and thickness were lowest at the filtration velocity of 6 m/hr.展开更多
文摘A new bioreactor on the basis of a dynamic fluidized bed was designed, which combines advantages of the fluidized bed and a biological contactor. The experiments of start-up, nor- mal operation and parameter adjustment are carried out. The re- sults show that the bioreactor can be quickly started up in the condition that the fill is 50%, the hydraulic retention time is 72 min, aerate speed is 2.5 m3/h, rotation-cage rotated speed is 1.5 r/min, and the removal rates of chemical oxygen demand (CODCr) and Ammonia nitrogen (NH3-N) are 75.34% and 80.98% respec- tively. The influence of the operation parameter on removal rates of the bioreactor is analyzed, and an appropriate operation pa- rameter is provided.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2012ZX07302002)
文摘Tertiary denitrification is an effective method for nitrogen removal from wastewater. A pilot-scale biofilter packed with suspended carriers was operated for tertiary denitrification with ethanol as the organic carbon source. Long-term performance, biokinetics of denitrification and biofilm growth were evaluated under filtration velocities of 6, 10 and 14 m/hr. The pilot-scale biofilter removed nitrate from the secondary effluent effectively, and the nitrate nitrogen(NO_3-N) removal percentage was 82%, 78% and 55% at the filtration velocities of 6, 10 and 14 m/hr, respectively. At the filtration velocities of 6 and 10 m/hr, the nitrate removal loading rate increased with increasing influent nitrate loading rates, while at the filtration velocity of 14 m/hr, the removal loading rate and the influent loading rate were uncorrelated.During denitrification, the ratio of consumed chemical oxygen demand to removed NO_3-N was 3.99-4.52 mg/mg. Under the filtration velocities of 6, 10 and 14 m/hr, the maximum denitrification rate was 3.12, 4.86 and 4.42 g N/(m^2·day), the half-saturation constant was 2.61, 1.05 and 1.17 mg/L, and the half-order coefficient was 0.22, 0.32 and 0.24(mg/L)1/2/min,respectively. The biofilm biomass increased with increasing filtration velocity and was 2845,5124 and 7324 mg VSS/m^2 at filtration velocities of 6, 10 and 14 m/hr, respectively. The highest biofilm density was 44 mg/cm^3 at the filtration velocity of 14 m/hr. Due to the low influent loading rate, biofilm biomass and thickness were lowest at the filtration velocity of 6 m/hr.