The aim of this paper is to investigate the role of lightweight structures and connections in the DfD(design for disassembly)framework.The construction sector is facing pressure to reduce its environmental impact,whic...The aim of this paper is to investigate the role of lightweight structures and connections in the DfD(design for disassembly)framework.The construction sector is facing pressure to reduce its environmental impact,which has led to heightened interest in DfD as a strategy for transitioning from a linear“Cradle to Grave”economic model to a circular“Cradle to Cradle”model.At the social level,DfD’s technological and spatial flexibility provides opportunities for self-build and self-maintenance processes,which can decrease land consumption and reduce costs for both owners and tenants.In this context,lightweight structures and connections are crucial for enabling these processes.The methodology used for analysis involves breaking down three technological elements chosen from three different projects to evaluate ease of disassembly,flexibility,potential for reuse,and recyclability.As a result,this paper aims to promote the development of an abacus of existing technological solutions,to provide designers with a tool that can help them pursue DfD strategies.展开更多
Sustainable architecture is complex. Many aspects, differently important to many stakeholders, are to be optimized. BIM should be used for this. Building Information Modellingis a collaborative process where all stake...Sustainable architecture is complex. Many aspects, differently important to many stakeholders, are to be optimized. BIM should be used for this. Building Information Modellingis a collaborative process where all stakeholders integrate and optimize their information in a digital 3D model. Sometimes it is called Green BIM. But what exactly is that? Is the International Standard Organization IFC standard useful for this? And is it compatible with new developments in parametric design? Advantages and disadvantages of BIM are listed. Full parametric design is needed because it keeps the design flexible and open for changes until the end of the design process. However it is not compatible with IFC; only object parametric design is. A possible way out of this paradox could be the use of scripts that only create objects if they are not already in the BIM database and otherwise only adapt their properties. An example of parametric sustainable architectural design explains the mentioned issues.展开更多
With the increasing requirement of a higher living quality and the growing awareness of energy saving, how to improve the indoor comfort level and to reduce the expenditure of energy and slow down the rate of natural ...With the increasing requirement of a higher living quality and the growing awareness of energy saving, how to improve the indoor comfort level and to reduce the expenditure of energy and slow down the rate of natural resource consumption is becoming increasingly important. The theory of open-plan housing is able to provide a more flexible and adaptive space for the users and bring sustainable and economic benefit in the way of making full use of construction materials. Sustainable architecture design, as a method to respond the phenomenon, is able to low down the building' s energy consumption and has enormous potentials in creation of sustainable living environment and a high-quality dwelling condition. The primary aim of this research is to create a new sustainable architecture design method for occupancy by integrating openplan housing theory and application of sustainable technologies. Numerical simulation by computer program is applied in order to investigate and evaluate the possibility of this method in teruas of improving indoor comfort level and energy-saving capacity.展开更多
Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based ...Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based on a systemic link building-climate-energy. The scientific analysis of this link allows us to define three technical levels of modern architecture. The lowest level is represented by low energy architecture that gives priority to the element of energy. Climate is defined only by physical parameters here. It is characterized by the production of emissions that deplete the Biocapacity of the Earth. Higher level of architecture is represented by green architecture which gives equal priority to both energy and ecology. Climate is defined by physical and chemical parameters here. It is characterized by the tendency of reduction of emissions production and move towards environmentally clean energy, material and water sources. Sustainable architecture represents the target program of development of human settlements in the interaction of society-energy-ecology. It is characterized by the balance of categories nature-man-technology and by minimizing the emissions production to the extent of their coverage by the Earth's ecosystems. This paper introduces design strategy for green building. The basic structure of the strategy defines, and internal structure of the strategy emphasizes, principles and concepts of green buildings. In this strategy, the vital role is played by renewable energy sources as a production technology of the capital provided to man by nature.展开更多
After the energy crisis in 1970s,buildings began to be used as a platform for the elements which produce energy from renewable energies to return them into energy producing power plants.This is a safe,clean and econom...After the energy crisis in 1970s,buildings began to be used as a platform for the elements which produce energy from renewable energies to return them into energy producing power plants.This is a safe,clean and economic way to produce energy since the energy is produced where it is needed and they use renewable energy resources.So,it promises hope for the future energy production.Therefore,the aim of this study is to examine buildings which produce electricity by using renewable energy resources and to show that this is one of the safest,cleanest and most economic ways to be used to produce energy in the future.This is done by describing power plants and how buildings are used as power producing stations by the use of renewable energy resources or other energy producing materials,then by examining case studies which are constructed and already being used,case studies which are just a design that have not yet been constructed,and by making projections to the future energy producing techniques that are just a proposal in 2021.In the conclusion,buildings are proposed as the future power plants,either here on earth or on another planet like Mars.展开更多
The study of organic stabilization is crucial for understanding its impact on the durability and effectiveness of earthen plaster.Analyzing natural admixtures’effects on plaster properties provides insights that aid ...The study of organic stabilization is crucial for understanding its impact on the durability and effectiveness of earthen plaster.Analyzing natural admixtures’effects on plaster properties provides insights that aid in optimizing plaster composition and application for desired characteristics.The addition of biopolymers,known to enhance plaster performance,necessitates further investigation to understand their role in earthen plaster stabilization.This study focuses on Tata Somba homes in Benin and Togo,recognized as UNESCO World Heritage sites.These unique architectural examples embody“architecture without architects”,relying solely on local traditional knowledge.The objective is to explore and revive Tata Somba’s ancient eco-technology for earth plaster stabilization.Research shows that biopolymers’combined stabilization and application techniques can improve earthen plaster performance.Seven promising bio-stabilizers were identified,suggesting their potential as sustainable,effective options for CO_(2) mitigation in buildings.These findings not only deepen our understanding of earthen architecture but also underscore the potential of merging traditional,eco-friendly building methods with modern scientific insights to create sustainable solutions for cultural heritage preservation and contemporary built environments.展开更多
In the transition to a more sustainable built environment over the last two decades,the“greening”of architecture as a popular approach has received widespread attention.However,there are still many open questions an...In the transition to a more sustainable built environment over the last two decades,the“greening”of architecture as a popular approach has received widespread attention.However,there are still many open questions and contradictions regarding how to design with“nature”and contribute to sustainability.In addition,explorations of built examples are rare,and three-dimensional(3D)green spaces in buildings are often overlooked.Therefore,we introduce“green pockets”(3D green spaces)as a typology distinct from two-dimensional green roofs and walls/facades.We draw on a mixed-method approach to study two cases(Erasmus MC and Hotel Jakarta),comprising 12 semi-structured interviews with different stakeholders,design document analysis,and site observation.We develop a critical reflection(a framework)on the impacts of“green architecture”on sustainability from unpacked benefits and adopt a biophilic design framework to analyse designing with“nature”in architectural practice.These findings demonstrate that green pockets contribute to integrating multiple experiences of“nature”into buildings and developing sustainable architecture.Designing green pockets with visibility,accessibility,and spatial characteristics(e.g.,prospect and refuge,organised complexity,peril,and mystery)of“nature”improves building quality.Furthermore,we provide design recommendations to advance green pocket designs and make suggestions for future research.展开更多
This work presents an analysis for the rural vernacular dwelling (Culata Yovai), sited in the South America Guarani region, basin of Paraguay and Paraná rivers. Outdoor climate has conducted man to build along ...This work presents an analysis for the rural vernacular dwelling (Culata Yovai), sited in the South America Guarani region, basin of Paraguay and Paraná rivers. Outdoor climate has conducted man to build along the time a habitat climatic responsive. Nowadays, studies in progress try to show how this vernacular typology can support new low-income house designs. The intent is to guarantee for new projects the socio-cultural image that people, coming from countryside to live in city outskirts, are accostumed. Also, to provide material improvements and functional adequation for a quality and healthiness. Natural ventilation is the main bioclimatic strategy during summer for thermal comfort, which influences the house characteristics. This is proven by calculation, and simulation with the CFX-ANSYS software. Thus, the analysis performed shows the real possibity to reconcile bioclimatism with the symbolic-cultural value represented by this vernacular architecture form. It is hopped that this study can be considered as a methodological contributition for new sustainable projects (materials, technics and services) of low-incoming houses in this Latin American region.展开更多
For the significant energy consumption and environmental impact,it is crucial to identify the carbon emission characteristics of building foundations construction during the design phase.This study would like to estab...For the significant energy consumption and environmental impact,it is crucial to identify the carbon emission characteristics of building foundations construction during the design phase.This study would like to establish a process-based carbon evaluating model,by adopting Building Information Modeling(BIM),and calculated the materialization-stage carbon emissions of building foundations without basement space in China,and identifying factors influencing the emissions through correlation analysis.These five factors include the building function type,building structure type,foundation area,foundation treatment method,and foundation depth.Additionally,this study develops several machine learning-based predictive models,including Decision Tree,Random Forest,XGBoost,and Neural Network.Among these models,XGBoost demonstrates a relatively higher degree of accuracy and minimal errors,can achieve the RMSE of 206.62 and R2 of 0.88 based on testing group feedback.The study reveals a substantial variability carbon emissions per building’s floor area of foundations,ranging from 100 to 2000 kgCO_(2)e/m^(2),demonstrating the potential for optimizing carbon emissions during the design phase of buildings.Besides,materials contribute significantly to total carbon emissions,accounting for 78%e97%,suggesting a significant opportunity for using BIM technology in the design phase to optimize carbon reduction efforts.展开更多
In the last ten years,‘nature’and biophilic design have received widespread attention in architecture,especially in response to growing environmental challenges.However,open questions and controversies remain regard...In the last ten years,‘nature’and biophilic design have received widespread attention in architecture,especially in response to growing environmental challenges.However,open questions and controversies remain regarding conceptualizing and addressing‘nature’in practice and research.This study conducts a literature review to discuss biophilic design as a theoretical framework to interpret‘nature’in architecture.The following questions are answered:(1)How has the concept of biophilic design emerged,and how can it be defined?(2)In what ways can biophilic design contribute to the goals of sustainable architecture?(3)What are the key design strategies in biophilic design?This review identifies and compares the key frameworks of biophilic design and explains their major elements.We then analyse the benefits(e.g.,enhance health,well-being,productivity,biodiversity,and circularity)of biophilic design in achieving sustainability,as framed through the UN Sustainable Development Goals.The results indicate that biophilic design is more complex and richer than the mere application of vegetation in buildings;it broadens the variety through encompassing different types of nature from physical,sensory,metaphorical,morphological,material to spiritual.Moreover,knowledge gaps are identified to motivate future research and critical reflections on biophilic design practices.展开更多
Contemporary architecture seems to turn its back on the past in terms of the raw materials taken from the environ‑ment,their transformation into building components and the way they are assembled to create buildings.T...Contemporary architecture seems to turn its back on the past in terms of the raw materials taken from the environ‑ment,their transformation into building components and the way they are assembled to create buildings.The global challenge of preserving the environment forces us to rethink the way we produce architecture today.Within this challenge,the past shows us possible ways to fll the gap between tradition and modernity.However,we need to understand what motivates people to abandon ancestral materials and knowledge for materials that they cannot manufacture or use themselves.Is this transformation to industrial materials and forms irreversible?Is there nothing we can learn from our rich past?How can we revive endogenous knowledge to produce environmentally wise archi‑tecture?These are the questions that the authors,who have been working on the revival of earthen heritage for over 20 years,wish to answer.展开更多
文摘The aim of this paper is to investigate the role of lightweight structures and connections in the DfD(design for disassembly)framework.The construction sector is facing pressure to reduce its environmental impact,which has led to heightened interest in DfD as a strategy for transitioning from a linear“Cradle to Grave”economic model to a circular“Cradle to Cradle”model.At the social level,DfD’s technological and spatial flexibility provides opportunities for self-build and self-maintenance processes,which can decrease land consumption and reduce costs for both owners and tenants.In this context,lightweight structures and connections are crucial for enabling these processes.The methodology used for analysis involves breaking down three technological elements chosen from three different projects to evaluate ease of disassembly,flexibility,potential for reuse,and recyclability.As a result,this paper aims to promote the development of an abacus of existing technological solutions,to provide designers with a tool that can help them pursue DfD strategies.
文摘Sustainable architecture is complex. Many aspects, differently important to many stakeholders, are to be optimized. BIM should be used for this. Building Information Modellingis a collaborative process where all stakeholders integrate and optimize their information in a digital 3D model. Sometimes it is called Green BIM. But what exactly is that? Is the International Standard Organization IFC standard useful for this? And is it compatible with new developments in parametric design? Advantages and disadvantages of BIM are listed. Full parametric design is needed because it keeps the design flexible and open for changes until the end of the design process. However it is not compatible with IFC; only object parametric design is. A possible way out of this paradox could be the use of scripts that only create objects if they are not already in the BIM database and otherwise only adapt their properties. An example of parametric sustainable architectural design explains the mentioned issues.
文摘With the increasing requirement of a higher living quality and the growing awareness of energy saving, how to improve the indoor comfort level and to reduce the expenditure of energy and slow down the rate of natural resource consumption is becoming increasingly important. The theory of open-plan housing is able to provide a more flexible and adaptive space for the users and bring sustainable and economic benefit in the way of making full use of construction materials. Sustainable architecture design, as a method to respond the phenomenon, is able to low down the building' s energy consumption and has enormous potentials in creation of sustainable living environment and a high-quality dwelling condition. The primary aim of this research is to create a new sustainable architecture design method for occupancy by integrating openplan housing theory and application of sustainable technologies. Numerical simulation by computer program is applied in order to investigate and evaluate the possibility of this method in teruas of improving indoor comfort level and energy-saving capacity.
文摘Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based on a systemic link building-climate-energy. The scientific analysis of this link allows us to define three technical levels of modern architecture. The lowest level is represented by low energy architecture that gives priority to the element of energy. Climate is defined only by physical parameters here. It is characterized by the production of emissions that deplete the Biocapacity of the Earth. Higher level of architecture is represented by green architecture which gives equal priority to both energy and ecology. Climate is defined by physical and chemical parameters here. It is characterized by the tendency of reduction of emissions production and move towards environmentally clean energy, material and water sources. Sustainable architecture represents the target program of development of human settlements in the interaction of society-energy-ecology. It is characterized by the balance of categories nature-man-technology and by minimizing the emissions production to the extent of their coverage by the Earth's ecosystems. This paper introduces design strategy for green building. The basic structure of the strategy defines, and internal structure of the strategy emphasizes, principles and concepts of green buildings. In this strategy, the vital role is played by renewable energy sources as a production technology of the capital provided to man by nature.
文摘After the energy crisis in 1970s,buildings began to be used as a platform for the elements which produce energy from renewable energies to return them into energy producing power plants.This is a safe,clean and economic way to produce energy since the energy is produced where it is needed and they use renewable energy resources.So,it promises hope for the future energy production.Therefore,the aim of this study is to examine buildings which produce electricity by using renewable energy resources and to show that this is one of the safest,cleanest and most economic ways to be used to produce energy in the future.This is done by describing power plants and how buildings are used as power producing stations by the use of renewable energy resources or other energy producing materials,then by examining case studies which are constructed and already being used,case studies which are just a design that have not yet been constructed,and by making projections to the future energy producing techniques that are just a proposal in 2021.In the conclusion,buildings are proposed as the future power plants,either here on earth or on another planet like Mars.
文摘The study of organic stabilization is crucial for understanding its impact on the durability and effectiveness of earthen plaster.Analyzing natural admixtures’effects on plaster properties provides insights that aid in optimizing plaster composition and application for desired characteristics.The addition of biopolymers,known to enhance plaster performance,necessitates further investigation to understand their role in earthen plaster stabilization.This study focuses on Tata Somba homes in Benin and Togo,recognized as UNESCO World Heritage sites.These unique architectural examples embody“architecture without architects”,relying solely on local traditional knowledge.The objective is to explore and revive Tata Somba’s ancient eco-technology for earth plaster stabilization.Research shows that biopolymers’combined stabilization and application techniques can improve earthen plaster performance.Seven promising bio-stabilizers were identified,suggesting their potential as sustainable,effective options for CO_(2) mitigation in buildings.These findings not only deepen our understanding of earthen architecture but also underscore the potential of merging traditional,eco-friendly building methods with modern scientific insights to create sustainable solutions for cultural heritage preservation and contemporary built environments.
文摘In the transition to a more sustainable built environment over the last two decades,the“greening”of architecture as a popular approach has received widespread attention.However,there are still many open questions and contradictions regarding how to design with“nature”and contribute to sustainability.In addition,explorations of built examples are rare,and three-dimensional(3D)green spaces in buildings are often overlooked.Therefore,we introduce“green pockets”(3D green spaces)as a typology distinct from two-dimensional green roofs and walls/facades.We draw on a mixed-method approach to study two cases(Erasmus MC and Hotel Jakarta),comprising 12 semi-structured interviews with different stakeholders,design document analysis,and site observation.We develop a critical reflection(a framework)on the impacts of“green architecture”on sustainability from unpacked benefits and adopt a biophilic design framework to analyse designing with“nature”in architectural practice.These findings demonstrate that green pockets contribute to integrating multiple experiences of“nature”into buildings and developing sustainable architecture.Designing green pockets with visibility,accessibility,and spatial characteristics(e.g.,prospect and refuge,organised complexity,peril,and mystery)of“nature”improves building quality.Furthermore,we provide design recommendations to advance green pocket designs and make suggestions for future research.
文摘This work presents an analysis for the rural vernacular dwelling (Culata Yovai), sited in the South America Guarani region, basin of Paraguay and Paraná rivers. Outdoor climate has conducted man to build along the time a habitat climatic responsive. Nowadays, studies in progress try to show how this vernacular typology can support new low-income house designs. The intent is to guarantee for new projects the socio-cultural image that people, coming from countryside to live in city outskirts, are accostumed. Also, to provide material improvements and functional adequation for a quality and healthiness. Natural ventilation is the main bioclimatic strategy during summer for thermal comfort, which influences the house characteristics. This is proven by calculation, and simulation with the CFX-ANSYS software. Thus, the analysis performed shows the real possibity to reconcile bioclimatism with the symbolic-cultural value represented by this vernacular architecture form. It is hopped that this study can be considered as a methodological contributition for new sustainable projects (materials, technics and services) of low-incoming houses in this Latin American region.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0208600)the Key Research and Development Plan of Shaanxi Province of China(Grant No.2023-ZDLSF-66)+1 种基金the National Natural Science Foundation of China(Grant No.51908111)the SRTP project of Southeast University(Grant No.202310286006Z).
文摘For the significant energy consumption and environmental impact,it is crucial to identify the carbon emission characteristics of building foundations construction during the design phase.This study would like to establish a process-based carbon evaluating model,by adopting Building Information Modeling(BIM),and calculated the materialization-stage carbon emissions of building foundations without basement space in China,and identifying factors influencing the emissions through correlation analysis.These five factors include the building function type,building structure type,foundation area,foundation treatment method,and foundation depth.Additionally,this study develops several machine learning-based predictive models,including Decision Tree,Random Forest,XGBoost,and Neural Network.Among these models,XGBoost demonstrates a relatively higher degree of accuracy and minimal errors,can achieve the RMSE of 206.62 and R2 of 0.88 based on testing group feedback.The study reveals a substantial variability carbon emissions per building’s floor area of foundations,ranging from 100 to 2000 kgCO_(2)e/m^(2),demonstrating the potential for optimizing carbon emissions during the design phase of buildings.Besides,materials contribute significantly to total carbon emissions,accounting for 78%e97%,suggesting a significant opportunity for using BIM technology in the design phase to optimize carbon reduction efforts.
文摘In the last ten years,‘nature’and biophilic design have received widespread attention in architecture,especially in response to growing environmental challenges.However,open questions and controversies remain regarding conceptualizing and addressing‘nature’in practice and research.This study conducts a literature review to discuss biophilic design as a theoretical framework to interpret‘nature’in architecture.The following questions are answered:(1)How has the concept of biophilic design emerged,and how can it be defined?(2)In what ways can biophilic design contribute to the goals of sustainable architecture?(3)What are the key design strategies in biophilic design?This review identifies and compares the key frameworks of biophilic design and explains their major elements.We then analyse the benefits(e.g.,enhance health,well-being,productivity,biodiversity,and circularity)of biophilic design in achieving sustainability,as framed through the UN Sustainable Development Goals.The results indicate that biophilic design is more complex and richer than the mere application of vegetation in buildings;it broadens the variety through encompassing different types of nature from physical,sensory,metaphorical,morphological,material to spiritual.Moreover,knowledge gaps are identified to motivate future research and critical reflections on biophilic design practices.
基金The 3 authors are staff at the National Superior School of Architecture in Grenoble(ENSAG),France.Funding is therefore provided by ENSAG.
文摘Contemporary architecture seems to turn its back on the past in terms of the raw materials taken from the environ‑ment,their transformation into building components and the way they are assembled to create buildings.The global challenge of preserving the environment forces us to rethink the way we produce architecture today.Within this challenge,the past shows us possible ways to fll the gap between tradition and modernity.However,we need to understand what motivates people to abandon ancestral materials and knowledge for materials that they cannot manufacture or use themselves.Is this transformation to industrial materials and forms irreversible?Is there nothing we can learn from our rich past?How can we revive endogenous knowledge to produce environmentally wise archi‑tecture?These are the questions that the authors,who have been working on the revival of earthen heritage for over 20 years,wish to answer.