期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Shaping the Future of Energy:A Path toward Zero-Emission and Sustainable Solutions
1
作者 Ali Zamani Paydar Bahman Zohuri 《Journal of Energy and Power Engineering》 CAS 2024年第2期75-78,共4页
In the age of rapidly growing global population and escalating energy demands,the pursuit of sustainable,zero-emission energy sources has become critical.This article explores the interplay between environmental conce... In the age of rapidly growing global population and escalating energy demands,the pursuit of sustainable,zero-emission energy sources has become critical.This article explores the interplay between environmental concerns,such as global warming and the greenhouse effect,and the need for innovative energy solutions.The melting polar ice caps exemplify the urgent need for reducing carbon emissions.ARCs(advanced reactor concepts)in both fission and fusion technologies offer promising paths to zero-emission energy.Advanced fission reactors,including SMRs(small modular reactors)and Generation IV reactors,provide improved safety,efficiency,and waste management.Fusion energy,despite being in the experimental stage,holds potential as a nearly limitless clean energy source.AI(artificial intelligence)significantly enhances these technologies by optimizing design,operations,maintenance,safety,and grid integration.AI-driven innovations are pivotal in accelerating the development and deployment of ARC technologies,ensuring they are safe,reliable,and efficient.The article underscores the vital role of policy support,global cooperation,and strategic investments in shaping a sustainable energy future that can mitigate the effects of climate change,support economic growth,and protect our planet. 展开更多
关键词 Zero-emission energy global warming greenhouse effect polar ice caps ARC nuclear fission nuclear fusion AI sustainable energy renewable energy technologies
下载PDF
Waste-Derived Catalysts for Water Electrolysis:Circular Economy-Driven Sustainable Green Hydrogen Energy 被引量:3
2
作者 Zhijie Chen Sining Yun +7 位作者 Lan Wu Jiaqi Zhang Xingdong Shi Wei Wei Yiwen Liu Renji Zheng Ning Han Bing-Jie Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期43-79,共37页
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts.By following the circular economy principle,the utilization of waste-derived catalysts significantly pro... The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts.By following the circular economy principle,the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy.Currently,diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and overall water electrolysis(OWE).Herein,we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis.The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed,followed by the illustration of current strategies for transforming wastes into electrocatalysts.Then,applications of waste-derived catalysts(i.e.,carbon-based catalysts,transitional metal-based catalysts,and carbon-based heterostructure catalysts)in HER,OER,and OWE are reviewed successively.An emphasis is put on correlating the catalysts’structure-performance relationship.Also,challenges and research directions in this booming field are finally highlighted.This review would provide useful insights into the design,synthesis,and applications of waste-derived electrocatalysts,and thus accelerate the development of the circular economy-driven green hydrogen energy scheme. 展开更多
关键词 Waste-derived electrocatalysts Water splitting sustainable hydrogen energy Catalyst design Circular economy
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
3
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy sustainable energy Thermo-regulation
下载PDF
In Situ Mineralization of Biomass-Derived Hydrogels Boosts Capacitive Electrochemical Energy Storage in Free-Standing 3D Carbon Aerogels
4
作者 Anjali Achazhiyath Edathil Babak Rezaei +1 位作者 Kristoffer Almdal Stephan Sylνest Keller 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期359-371,共13页
Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedde... Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization(iMAG),while the intrinsic structural integrity of the carbon aerogels was maintained.The homogenously distributed minerals simultaneously acted as a hard template,activating agent,and graphitization catalyst.The decomposition of the homogenously distributed CaCO_(3)during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance.At 0.5 mA cm^(-2),the gravimetric capacitance increased from 0.01 F g^(-1)without mineralization to 322 F g^(-1)with iMAG,which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes.An outstanding cycling stability of~104%after 1000 cycles in 1 M HClO4 was demonstrated.The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g^(-1)and a high energy density of 26 W h kg^(-1)at a power density of 4000 W kg^(-1),with excellent cycling performance(98.5%retention after 2000 cycles).In combination with the proposed 3D printed mold-assisted solution casting(3DMASC),iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes.Furthermore,the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design,dimensions,and pore size distribution for specific energy storage applications. 展开更多
关键词 BIOMASS carbon aerogel sustainable energy materials FREE-STANDING SUPERCAPACITORS
下载PDF
Sustainable Energy Management with Traffic Prediction Strategy for Autonomous Vehicle Systems
5
作者 Manar Ahmed Hamza Masoud Alajmi +3 位作者 Jaber SAlzahrani Siwar Ben Haj Hassine Abdelwahed Motwakel Ishfaq Yaseen 《Computers, Materials & Continua》 SCIE EI 2022年第8期3465-3479,共15页
Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesse... Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches. 展开更多
关键词 sustainable energy TRANSPORTATION energy management traffic flow prediction soft computing deep learning
下载PDF
Case Study:Promoting Sustainable Energy Greenhouse Heating Systems to Small-Scale Local Farms
6
作者 Jeremy Ferrell Ok-Youn Yu Heiyoung Kim 《Journal of Agricultural Science and Technology(A)》 2020年第4期165-180,共16页
Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,Nort... Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest. 展开更多
关键词 GREENHOUSE sustainable energy farms heating system small-scale.
下载PDF
Minimizing Environmental and Health Impacts in Developing Countries through Adoption of Sustainable Energy Options: A Case Study
7
作者 Muhammad Zulfiqar Ali Khan 《Journal of Environmental Science and Engineering(A)》 2016年第6期312-320,共9页
An extensive review and analysis of the available global energy sources data and information from 38 countries including Pakistan, and their impacts (socio-economic, environmental, and health) shows that one of the ... An extensive review and analysis of the available global energy sources data and information from 38 countries including Pakistan, and their impacts (socio-economic, environmental, and health) shows that one of the most sustainable and environment friendly energy options (especially considering rural areas) is renewable energy (solar and wind), while other options (in descending order) are hydro, nuclear and coal. The use of "oil and gas" as energy option is not cost effective due to its serious environmental, health and financial implications. The cost of producing 1 KWh of energy from oil and gas in Pakistan is around Rs. 20 (U.S. $ 0.19), while the same costs for hydro power and coal are 1/10th and ~nd respectively. Appropriate and suitable energy options are proposed in view of the current energy situation, available natural resources (water, coal, wind and sun), serious energy conservation efforts and efficient usage of available energy. 展开更多
关键词 sustainable energy options health and environmental impacts developing countries.
下载PDF
Historical Review of Hydrogen Energy Storage Technology 被引量:1
8
作者 Wilson Fidelis Ekpotu Joseph Akintola +1 位作者 Martins Chineme Obialor Udom Philemon 《World Journal of Engineering and Technology》 2023年第3期454-475,共22页
Hydrogen energy as a sustainable energy source has most recently become an increasingly important renewable energy resource due to its ability to power fuel cells in zero-emission vehicles and its help in lowering the... Hydrogen energy as a sustainable energy source has most recently become an increasingly important renewable energy resource due to its ability to power fuel cells in zero-emission vehicles and its help in lowering the levels of CO2</sub> emissions. Also, hydrogen has a high energy density and can be utilized in a wide range of applications. It is indeed the fuel of the future but, it is still not entirely apparent how to analyze the most successful ways for hydrogen storage based on technological configuration, nature, and efficiency mechanisms. The historical hydrogen storage technologies as they are presented by the current research have been evaluated, analyzed, and examined in this study. The two categories of hydrogen storage systems are physical-based and material-based.The first category involves storing hydrogen as liquid, cold/cryo-compressed, and compressed gas. Chemical sorption/chemisorption and physical sorption/physisorption are the two primary sub-groups of material-based storage, respectively. The quantitative and qualitative analyses of storage technologies for hydrogen are evaluated in this paper. Also, this report reviews the major safety and reliability issues currently facing hydrogen storage systems. Suggestions are made to assist lay the groundwork for future risk and reliability analysis to ensure safe, dependable operation. 展开更多
关键词 Hydrogen energy energy Storage sustainable energy Hydrogen Storage energy Source
下载PDF
Special Issue on New Concepts and Advances in Photocatalytic Materials for Sustainable Energy
9
作者 Gabriele Centi Siglinda Perathoner 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期205-206,共2页
The use of solar energy to drive the chemical and energy processes,and the chemical storage of solar energy are the key elements to move to a low-carbon economy,sustainable society and to foster energy transition.For ... The use of solar energy to drive the chemical and energy processes,and the chemical storage of solar energy are the key elements to move to a low-carbon economy,sustainable society and to foster energy transition.For this reason,there is a fast-growing scientific interest on this subject,which is part of the general effort for a solar-driven chemistry and energy,the chemistry of the future.To realize this 展开更多
关键词 Special Issue on New Concepts and Advances in Photocatalytic Materials for sustainable energy
下载PDF
Study on Energy Issues Regarding Sustainable Economic Development of China
10
作者 Yang Xunying 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2006年第4期1-5,共5页
Over the past twenty years China has made astonishing achievements in theenergy domain and the total output of coal,electricity and petroleum ranked respectively thefirst,second and fifth place in the world.China has ... Over the past twenty years China has made astonishing achievements in theenergy domain and the total output of coal,electricity and petroleum ranked respectively thefirst,second and fifth place in the world.China has established a strong energy base and resolvedthe energy supply to most villages and farmers to prop up the development of China''s economy. 展开更多
关键词 Study on energy Issues Regarding sustainable Economic Development of China SCE
下载PDF
Exploring the Promises and Challenges of Urban Air Mobility (UAM)
11
作者 Yusuf Karimli Aniello Daniele Marano 《Advances in Aerospace Science and Technology》 2024年第3期75-84,共10页
This paper is focused on a higher-level report of a new generation of Unmanned Aerial Vehicle (UAV) technologies. Starting from the structural scalability of civil tiltrotors, design strategy and requirements for UAVs... This paper is focused on a higher-level report of a new generation of Unmanned Aerial Vehicle (UAV) technologies. Starting from the structural scalability of civil tiltrotors, design strategy and requirements for UAVs, and advanced composite materials, the increased speed and productivity requirements for tiltrotors have spawned several investigations associated with proprotor aero elastic stability augmentation and aerodynamic performance enhancements. The research emphasized the Large Civil Tilt Rotor as the configuration with the best potential to meet the technology goals, and the design, including the challenges of the Large Civil Tilt Rotor (LCTR). The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The research includes some manufacturers of helicopters, drones and tiltrotors carrying out design studies and production of prototypes, as well as research projects aimed at designing, manufacturing, qualifying, and flight-testing the new wing of the Next-Generation Civil Tiltrotor Technology Demonstrator. Promises of Vertical Take-off and Landing (VTOL) aircraft, UAVs, Digitalization of Urban Air Mobility (UAM), and the “U-space” concept are discussed in the paper. The eight SUMP principles and possibilities of future advancements are emphasized. 展开更多
关键词 THERMODYNAMICS Aerospace Innovations sustainable energy systems Fluid Dynamics Aeronautical Engineering Green Technology Digital Development of Engineering Urban Air Mobility
下载PDF
IRP/DSM and Sustainable Development
12
作者 胡兆光 《Electricity》 2001年第1期31-33,共3页
This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it poi... This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it points out the solution, i.e., to implement integrated resources planning (IRP)/demand side management (DSM), and gives some recommendations on the way of implementing IRP/DSM. 展开更多
关键词 energy consumption structure energy environment sustainable development integrated resources planning (IRP) demand side management (DSM)
下载PDF
Design of a Mobile Photovoltaic Module System for Demonstration and Experimentation
13
作者 Maria Dolores Duran Garcia Ivan G. Martinez Cienfuegos Bernd Weber Eduardo Rincon Mejia JoannaJuairez 《Journal of Energy and Power Engineering》 2014年第9期1568-1574,共7页
In Mexico, owing to solar radiation conditions, there is great potential for PV (photovoltaic) systems. Besides, since 2007, the solar electricity interconnection agreement became official which allowed for an impor... In Mexico, owing to solar radiation conditions, there is great potential for PV (photovoltaic) systems. Besides, since 2007, the solar electricity interconnection agreement became official which allowed for an important growth of the photovoltaic industry. Due to the important development of the PV industry, there is a need for engineers trained to design, install, and evaluate PV systems The UAEMEX (autonomous university of the state of Mexico) offers a new bachelor degree of engineering program which dedicated to the development of sustainable energy systems. This kind of programs requires special equipment for experimentation and practice Specialists at UAEMEX also detected the need for a system to evaluate and demonstrate the application of PV modules, but they also found that most of the systems on the market are very expensive and unable to evaluate different arrangements. The goal of this paper is to present the design of a mobile system to evaluate PV modules and arrangements. This system is useful, not only for demonstration practices, but also for experimentation with different materials and types of PV panels. The design allows for two or four PV modules to be assembled in different positions and inclinations. The prototype is equipped with a data acquisition system that will be used to obtain the PV module performance curves. It will also be used to evaluate the atmospheric, interference and shadow effects on these modules. This prototype will be used to complement the practice learning of solar PV systems, but also to demonstrate the use of PV modules. The prototype is being design and constructed by a group of mechanical and electronic engineering students and this fact will be useful to meet the needs of basic science, math, and engineering teaching objectives in an integrated and hands-on way project. The essential features of system are described. A comparative analysis of the systems on the market is carried out. Also presented are the learning advantages for the students involved in the design and construction of this kind of systems, as well as a summary of practices that may be performed with the equipment. 展开更多
关键词 PV training system sustainable energy systems engineering professional degree.
下载PDF
A perspective on carbon materials for future energy application 被引量:16
14
作者 Dang Sheng Su Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期151-173,共23页
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou... Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions. 展开更多
关键词 NANOCARBON CNT GRAPHENE hybrid carbon materials sustainable energy energy storage and conversion solar cells Li-batteries supercapac-itors
下载PDF
Addressing the trade-climate change-energy nexus: China's explorations in a global governance landscape 被引量:2
15
作者 Joachim MONKELBAAN 《Advances in Climate Change Research》 SCIE 2014年第4期206-218,共13页
We have arrived at a critical juncture when it comes to understanding the numerous ways in which trade interacts with climate change and energy(trade-climate-energy nexus).Trade remains crucial for the sustainable dev... We have arrived at a critical juncture when it comes to understanding the numerous ways in which trade interacts with climate change and energy(trade-climate-energy nexus).Trade remains crucial for the sustainable development of the world's greatest trading nation:China.After clarifying the linkages within the trade,climate change and energy nexus,this article delves into China's specific needs and interests related to trade,climate change and energy.Then it explores the ways in which trade can contribute to China's needs,to sustainable energy development and to the goals of the global climate agreement that is under negotiation.One main findings are China is a key participant in negotiations on trade liberalization of environmental technologies and services.These negotiations are in China's interests in terms of innovative industries,technological upgrading,employment and public health.China could stand up for the interests of other emerging and developing countries and serve as an example in terms of transitioning to a low-carbon economy.Beyond trade barriers issues of domestic(energy)regulation such as fossil-fuel subsidies as well as investment,competition-policy,tradefacilitation and transit issues related to clean energy need to be addressed.Building trust between relevant actors across sectors and national borders will be of the essence in order to foster long-term cooperation on technological innovation.As a way forward,different approaches towards the governance of trade and climate change will be highlighted.Besides discussing the specific aspects of Chinese participation in global trade and climate change governance,this paper aims at offering broader insights into the nexus between trade,energy and climate governance in China. 展开更多
关键词 Climate change TRADE GOVERNANCE sustainable energy goods and services Investment Emissions trading
下载PDF
Present and Future of Phase‑Selectively Disordered Blue TiO2 for Energy and Society Sustainability 被引量:2
16
作者 Yongguang Luo Hyoyoung Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期53-65,共13页
Titanium dioxide(TiO2)has garnered attention for its promising photocatalytic activity,energy storage capability,low cost,high chemical stability,and nontoxicity.However,conventional TiO2 has low energy harvesting eff... Titanium dioxide(TiO2)has garnered attention for its promising photocatalytic activity,energy storage capability,low cost,high chemical stability,and nontoxicity.However,conventional TiO2 has low energy harvesting efficiency and charge separation ability,though the recently developed black TiO2 formed under high temperature or pressure has achieved elevated performance.The phase-selectively ordered/disordered blue TiO2(BTO),which has visible-light absorption and efficient exciton disassociation,can be formed under normal pressure and temperature(NPT)conditions.This perspective article first discusses TiO2 materials development milestones and insights of the BTO structure and construction mechanism.Then,current applications of BTO and potential extensions are summarized and suggested,respectively,including hydrogen(H2)production,carbon dioxide(CO2)and nitrogen(N2)reduction,pollutant degradation,microbial disinfection,and energy storage.Last,future research prospects are proposed for BTO to advance energy and environmental sustainability by exploiting different strategies and aspects.The unique NPT-synthesized BTO can offer more societally beneficial applications if its potential is fully explored by the research community. 展开更多
关键词 Blue TiO2(BTO) Phase-selective disordering Visible-light-driven photocatalyst Charge separation energy and society sustainability
下载PDF
Effects of sustained cold and heat stress on energy intake, growth and mitochondrial function of broiler chickens 被引量:8
17
作者 ZHANG Shao-shuai SU Hong-guang +3 位作者 ZHOU Ying LI Xiu-mei FENG Jing-hai ZHANG Min-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2336-2342,共7页
To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-... To study the correlation of broiler chickens with energy intake, growth and mitochondrial function which exposed to sustained cold and heat stress and to find out the comfortable temperature, 288 broiler chickens(21-day with(748±26) g, 144 males and 144 females) were divided randomly into six temperature-controlled chambers. Each chamber contained six cages including eight AA broilers per cage, each cage as a repeat. After acclimation for one week(temperature, 21℃; relative humidity, 60%), the temperature of each chamber was adjusted(finished within 1 h) respectively to 10, 14, 18, 22, 26, or 30℃(RH, 60%) for a 14-day experimental period. After treatment, gross energy intake(GEI), metabolizable energy intake(MEI), the ratio of MEI/BW, metabolizability, average daily gain(ADG), the concentration of liver mitochondria protein and cytochrome c oxidase(CCO) were measured respectively. Our results confirmed that when the temperature over 26℃ for 14 days, GEI, MEI and CCO activities were decreased significantly(P〈0.05), but the concentration of liver mitochondria protein was increased and metabolizability of broilers was not influenced(P〉0.05). Compared with treatment for 14 days, the ratio of MEI/body weight(BW) were also decreased when the temperature over 26℃ after temperature stress for 7 days(P〈0.05), meanwhile mitochondrial protein concentration was increased at 10℃ and CCO activity was not affected(P〉0.05). Additionally at 22℃, the ADG reached the maximal value. When kept in uncomfortable temperatures for a long time, the ADG and CCO activities of broiler were reduced, which was accompanied by mitochondrial hyperplasia. In summary, our study focused on the performance of broilers during sustained cold and heat environmental temperatures ranging from 10 to 30℃. From the point of view of energy utilization, moreover, 22 to 26℃ is comfortable for 28–42 day s broilers. And these could provide the theoretical basis on the high efficient production. 展开更多
关键词 broiler chicken cytochrome c oxidase energy intake metabolizability sustained cold and heat stress
下载PDF
Energy Savings in Municipal Road Lighting: The Case of the Municipality of Hersonissos 被引量:1
18
作者 Sofia Yfanti Nikos Sakkas Anastasia Nistikaki 《Journal of Physical Science and Application》 2017年第3期59-65,共7页
In an era governed by economic crisis, deep recession and lack of funds, the perspective of sustainable development drives local government to a more focused and constant effort to adapt to their daily requirements no... In an era governed by economic crisis, deep recession and lack of funds, the perspective of sustainable development drives local government to a more focused and constant effort to adapt to their daily requirements not only in respect to the central state but also towards the growing needs of the local society. As the need for planning actions in accordance with the principles of sustainable energy remains urgent, municipalities continue to envision and to respond to their role in helping to create a better future for generations to come. Thereupon the vision of the Municipality of Hersonissos, as firstly recorded in its Business Plan for 2011-2014, was, and still is, its' development in an Economic, Tourist and Cultural pole by adopting and applying the basic principles of sustainable development. At the same time the Municipality's rigid vision, planning, and evaluation, oriented by environmental protection, highlighted the need for networking on European level as although cities are different, their problems are often common. Thus on April 18, 2011, the Municipality of Hersonissos, joined the European Union initiative "Covenant of Mayors" [1] with the common aim of the fight against climate change. This article presents the significant initiatives taken in this direction in the last decade and their results not only on economical level but also along their social impact. It also aims to point out a municipality's vital role in knowledge and technology diffusion within the local society as sustainable energy development can be deployed not only by the private sector but also by the public. 展开更多
关键词 sustainable energy development MUNICIPALITY Crete.
下载PDF
The energy-chemistry nexus: A vision of the future from sustainability perspective 被引量:2
19
作者 Salvatore Abate Gabriele Centi +1 位作者 Paola Lanzafame Siglinda Perathoner 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期535-547,共13页
The changing energy-chemistry nexus is discussed in this perspective paper about the future of sustainable energy and chemical production to identify the priorities and open issues on which focus research and developm... The changing energy-chemistry nexus is discussed in this perspective paper about the future of sustainable energy and chemical production to identify the priorities and open issues on which focus research and development. Topics discussed regard (i) the new sustainable energy scenario, (ii) the role of energy storage (from smart grids to chemical storage of energy), (iii) the outlooks and role of solar (bio)refineries and solar fuels, (iv) how to integrate hio- and solar-refineries to move to new economy, (v) the role of methanol at the crossover of new energy-chemistry nexus, (vi) the role of chemistry in this new scenario, (vii) the role of nanomaterials for a sustainable energy, (viii) the use of nanocarbons to design advanced energy conversion and storage devices, and (ix) possibilities and routes to exploit solar energy and methane (shale gas). The contribution provides a glimpse of the emerging directions and routes with some elements about their possible role in the future scenario, but does not orovide a detailed analysis of the state of the art in these directions 展开更多
关键词 energy Chemistry Future scenario Catalysis Sustainability
下载PDF
Integration of data-intensive,machine learning and robotic experimental approaches for accelerated discovery of catalysts in renewable energy-related reactions 被引量:3
20
作者 Oyawale Adetunji Moses Wei Chen +10 位作者 Mukhtar Lawan Adam Zhuo Wang Kaili Liu Junming Shao Zhengsheng Li Wentao Li Chensu Wang Haitao Zhao Cheng Heng Pang Zongyou Yin Xuefeng Yu 《Materials Reports(Energy)》 2021年第3期20-33,共14页
Technological advancements in recent decades have greatly transformed the field of material chemistry.Juxtaposing the accentuating energy demand with the pollution associated,urgent measures are required to ensure ene... Technological advancements in recent decades have greatly transformed the field of material chemistry.Juxtaposing the accentuating energy demand with the pollution associated,urgent measures are required to ensure energy maximization,while reducing the extended experimental time cycle involved in energy production.In lieu of this,the prominence of catalysts in chemical reactions,particularly energy related reactions cannot be undermined,and thus it is critical to discover and design catalyst,towards the optimization of chemical processes and generation of sustainable energy.Most recently,artificial intelligence(AI)has been incorporated into several fields,particularly in advancing catalytic processes.The integration of intensive data set,machine learning models and robotics,provides a very powerful tool in modifying material synthesis and optimization by generating multifarious dataset amenable with machine learning techniques.The employment of robots automates the process of dataset and machine learning models integration in screening intermetallic surfaces of catalyst,with extreme accuracy and swiftness comparable to a number of human researchers.Although,the utilization of robots in catalyst discovery is still in its infancy,in this review we summarize current sway of artificial intelligence in catalyst discovery,briefly describe the application of databases,machine learning models and robots in this field,with emphasis on the consolidation of these monomeric units into a tripartite flow process.We point out current trends of machine learning and hybrid models of first principle calculations(DFT)for generating dataset,which is integrable into autonomous flow process of catalyst discovery.Also,we discuss catalyst discovery for renewable energy related reactions using this tripartite flow process with predetermined descriptors. 展开更多
关键词 Material chemistry sustainable energy Artificial intelligence Machine learning models ROBOTS Catalyst discovery Intensive dataset
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部