The criteria of sustainable design have been already received for reducing heating energy consumption (i.e. Passivhaus standard and first fulfillment of the EPDB Directive). Nowadays, many research are being involve...The criteria of sustainable design have been already received for reducing heating energy consumption (i.e. Passivhaus standard and first fulfillment of the EPDB Directive). Nowadays, many research are being involved to extend the passive standard to buildings in mild climate areas. Compared to building efficiency in the middle European area, the requirements for sustainable development of construction in the Mediterranean area imply an higher and more articulated passive control of outside/inside energy flows in order to extend energy efficiency measures to the whole year. This is based on an intense interaction between external climatic conditions and the building whole performance, with a dynamic behavior according to climate seasonal changes and inside comfort. Consequently, the integrated design of building fabrics, conceived not as separated components but as complex organism and system of interaction, increases its potential and strategic aim for reducing building consumptions of whole year in the mild climate. This paper demonstrates, both in new constructions and in the renovation of existing buildings, that the whole performance approach is the most suitable for sustainable design in a typical Mediterranean climate in order to increase the efficiency with controlled investments. The aim of this research is to show, through some case studies in Sardinia, that this sensitive and performance approach could optimize the ratio between economic costs and energy and environmental benefits. Only through an integrated and intelligent design of the architectural organism it is possible to achieve the new targets for sustainable building development, even for mild climate areas, required by European Directive 2002/91/EC.展开更多
文摘The criteria of sustainable design have been already received for reducing heating energy consumption (i.e. Passivhaus standard and first fulfillment of the EPDB Directive). Nowadays, many research are being involved to extend the passive standard to buildings in mild climate areas. Compared to building efficiency in the middle European area, the requirements for sustainable development of construction in the Mediterranean area imply an higher and more articulated passive control of outside/inside energy flows in order to extend energy efficiency measures to the whole year. This is based on an intense interaction between external climatic conditions and the building whole performance, with a dynamic behavior according to climate seasonal changes and inside comfort. Consequently, the integrated design of building fabrics, conceived not as separated components but as complex organism and system of interaction, increases its potential and strategic aim for reducing building consumptions of whole year in the mild climate. This paper demonstrates, both in new constructions and in the renovation of existing buildings, that the whole performance approach is the most suitable for sustainable design in a typical Mediterranean climate in order to increase the efficiency with controlled investments. The aim of this research is to show, through some case studies in Sardinia, that this sensitive and performance approach could optimize the ratio between economic costs and energy and environmental benefits. Only through an integrated and intelligent design of the architectural organism it is possible to achieve the new targets for sustainable building development, even for mild climate areas, required by European Directive 2002/91/EC.