Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a...Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.展开更多
[Objective]The paper was to screen a new ideal sustained-release,long-lasting and low-toxic pesticide and convenient and efficient pesticide application technology for controlling Ceratovacuna lanigera and Baliathrips...[Objective]The paper was to screen a new ideal sustained-release,long-lasting and low-toxic pesticide and convenient and efficient pesticide application technology for controlling Ceratovacuna lanigera and Baliathrips serratus. [Method]2% Imidacloprid GR were selected and applied in the soil for field efficacy trial. [Result] The optimum dosage of 2% imidacloprid GR was 30 kg/hm^2( active ingredient 600 g),which can be mixed with fertilizer( 30 kg pesticide and 40-80 kg fertilizer per hm^2) once combined with sugarcane planting management or big ridging during February and June. The control effects against C. lanigera and B. serratus could be more than 98. 2% and 81. 1%,respectively. The actual yield and sugar content in various pesticide treatments were increased by 33 390 kg/hm^2 and 6. 6% respectively compared to blank control. [Conclusion]2% imidacloprid GR has good control effects on C. lanigera and B. serratus. It is a new pesticide with ideal sustained-release,long-lasting and low-toxin effects against C. lanigera and B. serratus. Therefore,it could be used alternatively with other pesticides,to delay production and development of drug resistance.展开更多
A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation t...A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation time.The microstructure, photochromic behavior and mechanism of the films were studied by transmission electron microscopy (TEM), ultraviolet-visible spectra (UV-VIS) and Fourier transform-infrared spectroscopy (FT-IR).The microstructure and photochromic properties of the hybrid thin films could be controlled by ultrasound.TEM image revealed that the average size of phosphotungstic acid (PWA) nanoparticles decreased from 20 to 10 nm with the ultrasound irradiation time from 30 to 60 min. After irradiated with ultraviolet light,the transparent films changed from colorless to blue and showed reversible photochromism. The hybrid film, with ultrasound irradiation for 60 min had higher photochromic efficiency and faster bleaching reaction than the one with ultrasound irradiation for 30 min. FT-IR spectra showed that the Keggin geometry of heteropolyoxometalate was still preserved inside the composites, and the interactions between polyanions and polymer matrix increased as the ultrasound time prolonged. It is suggested that the mechanism of the different photochromic properties for the inorganic-organic thin films is the variation of the microstructure and interfacial interactions induced by ultrasound.展开更多
Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respective...Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.展开更多
The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared b...The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared based on an SMA plate, and combined into a GMF-SMA composite plate. The Van der Pol item is improved to explain the hysteretic phenomena of GMF and SMA, and the nonlinear dynamics model of a GMF-SMA composite cantilever plate subjected to in-plane stochastic excitation is developed. The stochastic stability of the system is analyzed, and the steady-state probability density function of the dynamic response of the system is obtained. The condition of stochastic Hopf bifurcation is discussed, the reliability function of the system is provided, and then the probability density of the first-passage time is given. Finally, the stochastic optimal control strategy is proposed by the stochastic dynamic programming method. Numerical simulation shows that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the system's reliability is improved through stochastic optimal control, and the first- passage time is delayed. A GMF-SMA composite plate combines the advantages of GMF and SMA, and can reduce vibration through passive control and active control effectively. The results are helpful for the engineering applications of GMF-SMA composite plates.展开更多
In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different de...In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different deposition times using a facile magnetron sputtering deposition system. The ratios of methane concentration(CH4/Ar+CH4) used in the experiments are 20%, 40%, and 60%, and the deposition times are 5 minutes, 20 minutes, and 40 minutes, respectively.Despite the difference in the growth conditions, self-organizing multilayered copper-carbon films are prepared at different deposition times by changing methane concentration. The film composition and microstructure are investigated by x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), and high-resolution transmission electron microscopy(HRTEM). By comparing the composition and microstructure of three serial films, the optimal growth conditions and compositions for self-organizing nano-multilayers in copper-carbon film are acquired. The results demonstrate that the self-organized nano-multilayered structure prefers to form in two conditions during the deposition process. One is that the methane should be curbed at low concentration for long deposition time,and the other condition is that the methane should be controlled at high concentration for short deposition time. In particular, nano-multilayered structure is self-organized in the copper-carbon film with copper concentration of 10-25 at.%.Furthermore, an interesting microstructure transition phenomenon is observed in copper-carbon films, that is, the nanomultilayered structure is gradually replaced by a nano-composite structure with deposition time and finally covered by amorphous carbon.展开更多
Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ...Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.展开更多
High mass resolution of sensors based on film bulk acoustic resonators (FBARs) is required for the detection of small molecules with the low concentration. An active control scheme is presented to improve the mass r...High mass resolution of sensors based on film bulk acoustic resonators (FBARs) is required for the detection of small molecules with the low concentration. An active control scheme is presented to improve the mass resolution of the FBAR sen- sors by adding a feedback voltage onto the driving voltage between two electrodes of the FBAR sensors, The feedback voltage is obtained by giving a constant gain and a constant phase shift to the current on the electrodes of the FBAR sensors. The acoustic energy produced by the feedback voltage partly compensates the acoustic energy loss due to the material damping and the acoustic scattering, and thus improves the quality factor and the mass resolution of the FBAR sensors. An explicit expression relating to the impedance and the frequency for an FBAR sensor with the active control is derived based on the continuum theory by neglecting the influence of the electrodes. Numerical simulations show that the impedance of the FBAR sensor strongly depends on the gain and the phase shift of the feedback voltage, and the mass resolution of the FBAR sensor can greatly be improved when the appropriate gain and the phase shift of the feedback voltage are used. The active control scheme also provides an effective solution to improve the resolution of the quartz crystal microbalance (QCM).展开更多
[Objectives]This study was conducted to explore the characteristics of soil residual film pollution load in cotton fields in the Yellow River Delta,so as to effectively control soil film pollution.[Methods]Cotton fiel...[Objectives]This study was conducted to explore the characteristics of soil residual film pollution load in cotton fields in the Yellow River Delta,so as to effectively control soil film pollution.[Methods]Cotton field mulching film survey and residue monitoring were conducted in the Yellow River Delta area.[Results]The amount of mulching film residues in cotton fields in the Yellow River Delta was 37.7-128.7 kg/hm^(2),which had a significant increase compared with 5 years ago,and the differences between plots were large;and after straw was returned to the field,the soil residual film obviously gathered in the 20-30 cm soil layer.The residual film blocks with a size of more than 25 cm^(2) accounted for 62.6%,which was a relatively high proportion,indicating that soil pollution can be caused easily,and it is difficult to control.During a certain period of time,the soil residual film pollution may have a tendency to aggravate,and the ecological risk is higher.[Conclusions]This study has important theoretical and practical significance for improving soil quality in the region and ensuring the safety of cotton field ecosystem and environmental health.展开更多
Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light i...Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light irradiation (532 nm), both kinds of films were characterized by using UV-visible spectroscopy and atomic force microscopy (AFM). At dif- ferent irradiation times, layer-by-layer, LbL, films showed small changes in the roughness and irregular behavior, whereas spray films exhibited higher and a regular decreasing of roughness with increasing irradiation time. The higher roughness of spray films as compared with the LbL ones was attributed to different formation mechanisms of the films. The decreasing of the roughness as a function of the irradiation time (exhibited by the spray films) was associated to surface relaxation due to the interplay between photoisomerization of congo red dye and the heating of the sample during the laser light irradiation. The results suggested that the alternative spray technique is the best choose to control of roughness of the films by using light irradiation.展开更多
Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearin...Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearing with piezoelectric crystal electrohydraulic active control supply orifice hole is proposed. For this kind of hybrid film bearing, the π film assumption can not hold true. In order to solve the pressure distribution, a new kind of solving method is proposed.展开更多
当前AI工具存在自动化程度过高、人类控制不足造成生成结果可控性差的问题,成为其应用于专业影视创作的主要壁垒。本文通过总结自主视频生成流程“墨池”(Inkstone)设计与应用中的经验,结合人工智能(AI)与自动化领域的有意义人类控制(Me...当前AI工具存在自动化程度过高、人类控制不足造成生成结果可控性差的问题,成为其应用于专业影视创作的主要壁垒。本文通过总结自主视频生成流程“墨池”(Inkstone)设计与应用中的经验,结合人工智能(AI)与自动化领域的有意义人类控制(Meaningful Human Con⁃trol,MHC)概念,对比了三种不同的自动化工具设计思路,分析了基于MHC的AI影视创作流程和工具开发具体方式,以及目前加强人类控制的若干可行技术路径。研究表明,加强AI训练和生成过程中的MHC,有望在发挥AI工具优势的前提下,对生成内容进行准确控制,从而使创作能够体现艺术家意图,适应专业影视创作需求。展开更多
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
基金National Natural Science Foundation of China(22078039)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)+1 种基金National Key Research and Development Program of China(2023YFB3810700)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
文摘Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.
基金Supported by Special Fund for China Agricultural Industry Research System(CARS-20-2-2)Special Fund for Agricultural Industry Research System of Yunnan Province(YNGZTX-4-92)
文摘[Objective]The paper was to screen a new ideal sustained-release,long-lasting and low-toxic pesticide and convenient and efficient pesticide application technology for controlling Ceratovacuna lanigera and Baliathrips serratus. [Method]2% Imidacloprid GR were selected and applied in the soil for field efficacy trial. [Result] The optimum dosage of 2% imidacloprid GR was 30 kg/hm^2( active ingredient 600 g),which can be mixed with fertilizer( 30 kg pesticide and 40-80 kg fertilizer per hm^2) once combined with sugarcane planting management or big ridging during February and June. The control effects against C. lanigera and B. serratus could be more than 98. 2% and 81. 1%,respectively. The actual yield and sugar content in various pesticide treatments were increased by 33 390 kg/hm^2 and 6. 6% respectively compared to blank control. [Conclusion]2% imidacloprid GR has good control effects on C. lanigera and B. serratus. It is a new pesticide with ideal sustained-release,long-lasting and low-toxin effects against C. lanigera and B. serratus. Therefore,it could be used alternatively with other pesticides,to delay production and development of drug resistance.
文摘A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation time.The microstructure, photochromic behavior and mechanism of the films were studied by transmission electron microscopy (TEM), ultraviolet-visible spectra (UV-VIS) and Fourier transform-infrared spectroscopy (FT-IR).The microstructure and photochromic properties of the hybrid thin films could be controlled by ultrasound.TEM image revealed that the average size of phosphotungstic acid (PWA) nanoparticles decreased from 20 to 10 nm with the ultrasound irradiation time from 30 to 60 min. After irradiated with ultraviolet light,the transparent films changed from colorless to blue and showed reversible photochromism. The hybrid film, with ultrasound irradiation for 60 min had higher photochromic efficiency and faster bleaching reaction than the one with ultrasound irradiation for 30 min. FT-IR spectra showed that the Keggin geometry of heteropolyoxometalate was still preserved inside the composites, and the interactions between polyanions and polymer matrix increased as the ultrasound time prolonged. It is suggested that the mechanism of the different photochromic properties for the inorganic-organic thin films is the variation of the microstructure and interfacial interactions induced by ultrasound.
文摘Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272229 and 11302144)the Ph.D.Programs Foundation of the Ministry of Education of China(Grant No.20120032120006)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.13JCYBJC17900)
文摘The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared based on an SMA plate, and combined into a GMF-SMA composite plate. The Van der Pol item is improved to explain the hysteretic phenomena of GMF and SMA, and the nonlinear dynamics model of a GMF-SMA composite cantilever plate subjected to in-plane stochastic excitation is developed. The stochastic stability of the system is analyzed, and the steady-state probability density function of the dynamic response of the system is obtained. The condition of stochastic Hopf bifurcation is discussed, the reliability function of the system is provided, and then the probability density of the first-passage time is given. Finally, the stochastic optimal control strategy is proposed by the stochastic dynamic programming method. Numerical simulation shows that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the system's reliability is improved through stochastic optimal control, and the first- passage time is delayed. A GMF-SMA composite plate combines the advantages of GMF and SMA, and can reduce vibration through passive control and active control effectively. The results are helpful for the engineering applications of GMF-SMA composite plates.
基金supported by the National Natural Science Foundation of China(Grant Nos.51472250,U1637204,and 51775537)
文摘In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different deposition times using a facile magnetron sputtering deposition system. The ratios of methane concentration(CH4/Ar+CH4) used in the experiments are 20%, 40%, and 60%, and the deposition times are 5 minutes, 20 minutes, and 40 minutes, respectively.Despite the difference in the growth conditions, self-organizing multilayered copper-carbon films are prepared at different deposition times by changing methane concentration. The film composition and microstructure are investigated by x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), and high-resolution transmission electron microscopy(HRTEM). By comparing the composition and microstructure of three serial films, the optimal growth conditions and compositions for self-organizing nano-multilayers in copper-carbon film are acquired. The results demonstrate that the self-organized nano-multilayered structure prefers to form in two conditions during the deposition process. One is that the methane should be curbed at low concentration for long deposition time,and the other condition is that the methane should be controlled at high concentration for short deposition time. In particular, nano-multilayered structure is self-organized in the copper-carbon film with copper concentration of 10-25 at.%.Furthermore, an interesting microstructure transition phenomenon is observed in copper-carbon films, that is, the nanomultilayered structure is gradually replaced by a nano-composite structure with deposition time and finally covered by amorphous carbon.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB125003 and 2013GB114002)National Natural Science Foundation of China(No.11105044)
文摘Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.
基金Project supported by the National Natural Science Foundation of China (No. 61076106)the National High Technology Research and Development Program of China (863 Program) (No. 2008AA04Z310)the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No. 708072)
文摘High mass resolution of sensors based on film bulk acoustic resonators (FBARs) is required for the detection of small molecules with the low concentration. An active control scheme is presented to improve the mass resolution of the FBAR sen- sors by adding a feedback voltage onto the driving voltage between two electrodes of the FBAR sensors, The feedback voltage is obtained by giving a constant gain and a constant phase shift to the current on the electrodes of the FBAR sensors. The acoustic energy produced by the feedback voltage partly compensates the acoustic energy loss due to the material damping and the acoustic scattering, and thus improves the quality factor and the mass resolution of the FBAR sensors. An explicit expression relating to the impedance and the frequency for an FBAR sensor with the active control is derived based on the continuum theory by neglecting the influence of the electrodes. Numerical simulations show that the impedance of the FBAR sensor strongly depends on the gain and the phase shift of the feedback voltage, and the mass resolution of the FBAR sensor can greatly be improved when the appropriate gain and the phase shift of the feedback voltage are used. The active control scheme also provides an effective solution to improve the resolution of the quartz crystal microbalance (QCM).
基金Supported by Coarse Cereals Innovation Team of Shandong Province Modern Agricultural Industry Technology System(SDAIT-15-11)Cotton Innovation Team(SDAIT-15-07)。
文摘[Objectives]This study was conducted to explore the characteristics of soil residual film pollution load in cotton fields in the Yellow River Delta,so as to effectively control soil film pollution.[Methods]Cotton field mulching film survey and residue monitoring were conducted in the Yellow River Delta area.[Results]The amount of mulching film residues in cotton fields in the Yellow River Delta was 37.7-128.7 kg/hm^(2),which had a significant increase compared with 5 years ago,and the differences between plots were large;and after straw was returned to the field,the soil residual film obviously gathered in the 20-30 cm soil layer.The residual film blocks with a size of more than 25 cm^(2) accounted for 62.6%,which was a relatively high proportion,indicating that soil pollution can be caused easily,and it is difficult to control.During a certain period of time,the soil residual film pollution may have a tendency to aggravate,and the ecological risk is higher.[Conclusions]This study has important theoretical and practical significance for improving soil quality in the region and ensuring the safety of cotton field ecosystem and environmental health.
基金This work was supported by CNPq and CAPES(Brazil).R.J.da Silva and R.R.G.Maciel thank Capes(nbioNet)and CNPq for the scholarship.
文摘Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light irradiation (532 nm), both kinds of films were characterized by using UV-visible spectroscopy and atomic force microscopy (AFM). At dif- ferent irradiation times, layer-by-layer, LbL, films showed small changes in the roughness and irregular behavior, whereas spray films exhibited higher and a regular decreasing of roughness with increasing irradiation time. The higher roughness of spray films as compared with the LbL ones was attributed to different formation mechanisms of the films. The decreasing of the roughness as a function of the irradiation time (exhibited by the spray films) was associated to surface relaxation due to the interplay between photoisomerization of congo red dye and the heating of the sample during the laser light irradiation. The results suggested that the alternative spray technique is the best choose to control of roughness of the films by using light irradiation.
文摘Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearing with piezoelectric crystal electrohydraulic active control supply orifice hole is proposed. For this kind of hybrid film bearing, the π film assumption can not hold true. In order to solve the pressure distribution, a new kind of solving method is proposed.
文摘当前AI工具存在自动化程度过高、人类控制不足造成生成结果可控性差的问题,成为其应用于专业影视创作的主要壁垒。本文通过总结自主视频生成流程“墨池”(Inkstone)设计与应用中的经验,结合人工智能(AI)与自动化领域的有意义人类控制(Meaningful Human Con⁃trol,MHC)概念,对比了三种不同的自动化工具设计思路,分析了基于MHC的AI影视创作流程和工具开发具体方式,以及目前加强人类控制的若干可行技术路径。研究表明,加强AI训练和生成过程中的MHC,有望在发挥AI工具优势的前提下,对生成内容进行准确控制,从而使创作能够体现艺术家意图,适应专业影视创作需求。