Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen...Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite.展开更多
Physicochemical investigations were performed on seeds of Nymphea lotus and N. micrantha consumed in the Senegal River valley. They revealed a composition similar to that of cereals. In order to estimate their intrins...Physicochemical investigations were performed on seeds of Nymphea lotus and N. micrantha consumed in the Senegal River valley. They revealed a composition similar to that of cereals. In order to estimate their intrinsic quality, the determination of their amino acid, fatty acid and monosaccharids profiles was done. The results indicate that monosaccharides are represented specifically by saccharose (7%) and glucose (0.67%);a predominance of stearic acid and linoleic acid as unsaturated acids (24.86%);arachidic and palmitic acids as the only saturated acid found (11.12%);a good ratio of unsaturated/saturated acid (2.23);a lack of oleic acid, linoleic, palmitoleic, myristic, caprylic acids;a poor-quality index protein due to low quantity amino acids. Nevertheless, all essential amino acids are present in the seeds. The Nymphea sp grains consumed by the populations around the Senegal River valley offer an interesting nutritional quality linked to fatty acids and carbohydrates.展开更多
Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its ...Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its seedlings to acifluorfen sodium can provide a basis for further researches on its resistance mechanism. Using newly harvested and stored A. retroflexus L. seeds for one year as experimental materials, the effects of different concentrations of HCl, NaOH, water temperature, gibberellic acid(GA) and polyethylene glycol(PEG) on the dormancy and germination of A. retroflexus L. seeds were studied. The sensitivity of A. retroflexus L.to acifluorfen sodium was determined using bioassay. The effects on leaf chlorophyll content and target enzyme activity were studied at a normal dosage of 360 g a.i. hm^(-2) and a doubling dosage of 720 g a.i. hm^(-2) of acifluorfen sodium. Newly harvested seeds exhibiting dormancy were soaked in water of various temperatures and in different concentrations of NaOH and HCl, which were ineffective in breaking the seed dormancy. GA could break seed dormancy, and the highest seed germination rate reached 93.33% when they were soaked at 3 000 mg·L^(-1) for 72 h and 4 000 mg·L^(-1) for 48 h. The drought stress was simulated with a 15%-25% polyethylene glycol solution, which had no significant effect on the seed germination rate. The GR_(50) value of acifluorfen sodium for A. retroflexus L. was 705.7 g a.i. hm^(-2), which was 1.96 times the recommended dose in the field. After the application of different doses of acifluorfen sodium, the chlorophyll content of A. retroflexus L. reached its minimum value 3 days after treatment(DAT), and then gradually increased. The activity of the target enzyme protoporphyrinogen oxidase(PPO) reached the highest value at 7 DAT under different dosages, and gradually returned to normal levels thereafter. Soaking with gibberellin was an effective method to break seed dormancy. A. retroflexus L. seeds had certain drought resistance during the germination process. A. retroflexus L. was not sensitive to acifluorfen sodium and acifluorfen sodium ether, and could not effectively inhibit the PPO activity, indicating that A. retroflexus L. had target resistance to acifluorfen sodium.展开更多
Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition...Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.展开更多
Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–gly...Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.展开更多
Pumpkin belongs to the family of Cucurbitaceae,which comprises several species that has economical as well as agronomical importance.All parts of pumpkin are edible and laden with beneficial neutraceutical compounds.P...Pumpkin belongs to the family of Cucurbitaceae,which comprises several species that has economical as well as agronomical importance.All parts of pumpkin are edible and laden with beneficial neutraceutical compounds.Pumpkin seeds are valuable source protein which can help in eradicating protein malnutrition and lipids(rich in PUFAs)contains essential as well as non essential fatty acids which prevents from various ailments like cancer and other cardiovascular diseases.Since,seeds of pumpkin are abundant in macro(magnesium,phosphorous,potassium,sodium and calcium)and micro minerals(iron,copper,manganese,zinc and selenium),they can be used as an incredible dietary supplement which in turn helps in curbing various deficiency disorders.This review enlightens the characteristics of pumpkin seeds,process of valorization of pumpkin seeds and the effect of processing on their nutritional composition which have been studied currently with the aim to use this wonder seeds for human wellbeing.Pumpkin seeds possess many bioactive compounds like polyphenols,flavonoids,phytosterols and squalene which makes it a lucrative raw material for pharmacological and food industries.Pumpkin seeds work as anti-depressant and helps majorly in the treatment of benign prostate hyperplasia(BHP).Daily consumption of pumpkin seeds can reduce the chances of Alzheimer's and Parkinson's disease.Pumpkin seeds are rich in tocopherols and can be used for oil extraction for edible purposes and utilized in other food formulations for future use.展开更多
[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Fo...[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Four high-generation stable rice lines with diverse salt tolerance were employed as test materials,and four NaCl concentration gradients were established for seed soaking treatment.[Results]The seedling survival rate of line 151465 underwent significant alterations after soaking with four different salt concentrations,and the survival rate was the highest after treatment with 1.8%NaCl for 1 d,reaching 65.2%.The average survival rate of other three lines with different salt tolerance reached 62%after soaking with 1.8%NaCl for 1 d,which was significantly higher than those of the 2.2%NaCl and 0%NaCl treatments.[Conclusions]This study provides a basis for reducing the effect of abiotic stress on rice growth and development and improving the utilization rate of saline-alkali land.展开更多
The inclusion of composite flours in infant food at weaning time should be a priority for mothers. The aim of this project is to formulate infant flour based on pulp flour enriched with oilcake from these grains after...The inclusion of composite flours in infant food at weaning time should be a priority for mothers. The aim of this project is to formulate infant flour based on pulp flour enriched with oilcake from these grains after extraction of the oil. To do this, the elements were combined to obtain a regulatory formulation. Micro- and macronutrients, minerals, vitamins and tasting of the prepared porridge were determined. The results obtained were satisfactory. The moisture content of the fruit pulp was determined using oven-drying techniques: 92.2%, carbohydrates 6.00%, lipids 0.3%, ash 0.80%, proteins 1.10%, calcium 19.8%, phosphorus 42.6% and iron 0.4%. Furthermore, the carbohydrate content of flours composed of 5% insertion is 62.9 g to 48.8 g per 100 g, and the protein content of compound flours with 5% insertion is 15.9 g to 28.25 g per 100 g. On the other hand, the vitamin C and E contents of fresh pulp and oilcake are 25 mg, 13 mg and 21 mg respectively. However, only copper and β-carotene from 5% to 30% insertion remain invariant to the different insertion rates, with a value of 25 mg for copper and 0 µg for β-carotene. In addition, a variation in the degree of swelling of weaning flours compared with the standard from 3.95% at 5% insertion to 3.58 at 30% insertion was observed. The solubility of flours increases on the one hand with increases in the degree of insertion of the cakes. Flour formulated so many toward basicity. But the presence of traces of oil containing fatty acids can reduce this basicity. This study may be an alternative of industrial flours in infant nutrition.展开更多
Apium graveolens,an annual herb belonging to the family of Apiaceae,is widely distributed in North and South America,Southern Europe,Africa and Asia.Apium graveolens seeds have a rich history in traditional Chinese me...Apium graveolens,an annual herb belonging to the family of Apiaceae,is widely distributed in North and South America,Southern Europe,Africa and Asia.Apium graveolens seeds have a rich history in traditional Chinese medicine for treating hypertension,headaches,vertigo and epilepsy.N-butylphthalide,originally extracted from Apium graveolens seeds,represents a first-in-class drug developed independently in China.Its broad pharmacological activities on nervous system disorders have garnered significant attention from researchers globally.This review focuses on the pharmacological research of n-butylphthalide on central nervous system diseases,including ischemic stroke,Alzheimer’s disease,Parkinson’s disease and amyotrophic lateral sclerosis.The purpose is to pave the way for future study on the mechanistic targets of n-butylphthalide.展开更多
Physical dormancy(PY) commonly present in the seeds of higher plants is believed to be responsible for the germination failure by impermeable seed coat in hard seeds of legume species, instead of physiological dormanc...Physical dormancy(PY) commonly present in the seeds of higher plants is believed to be responsible for the germination failure by impermeable seed coat in hard seeds of legume species, instead of physiological dormancy(PD). In this study, a non-destructive approach involving multispectral imaging was used to successfully identify hard seeds from non-hard seeds in Medicago sativa, with accuracy as high as96.8%–99.0%. We further adopted multiple-omics strategies to investigate the differences of physiology,metabolomics, methylomics, and transcriptomics in alfalfa hard seeds, with non-hard seeds as control.The hard seeds showed dramatically increased antioxidants and 125 metabolites of significant differences in non-targeted metabolomics analysis, which are enriched in the biosynthesis pathways of flavonoids, lipids and hormones, especially with significantly higher ABA, a hormone known to induce dormancy. In our transcriptomics results, the enrichment pathway of “response to abscisic acid” of differential expressed genes(DEG) supported the key role of ABA in metabolomics results. The methylome analysis identified 54,899, 46,216 and 54,452 differential methylation regions for contexts of CpG, CHG and CHH, and 344 DEGs might be regulated by hypermethylation and hypomethylation of promoter and exon regions, including four ABA-and JA-responsive genes. Among 8% hard seeds in seed lots,24.5% still did not germinate after scarifying seed coat, and were named as non-PY hard seeds.Compared to hard seeds, significantly higher contents of ABA/IAA and ABA/JA were identified in nonPY hard seeds, which indicated the potential presence of PD. In summary, the significantly changed metabolites, gene expressions, and methylations all suggested involvement of ABA responses in hard seeds, and germination failure of alfalfa hard seeds was caused by combinational dormancy(PY + PD),rather than PY alone.展开更多
We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role...We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level.展开更多
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
With the developing of juices and beverages industry, the processors need to bring new nutritional fortified products to capture the market as per the demand of the consumer who needs healthier product. Thus, this stu...With the developing of juices and beverages industry, the processors need to bring new nutritional fortified products to capture the market as per the demand of the consumer who needs healthier product. Thus, this study aimed to the production of mango beverage and mango flavored beverage fortified with chia seeds;evaluate the chemical properties of chia seeds and study the effect of adding carboxymethyl cellulose, xanthan gum and low acyl gellan gum at the concentrations of 0.05% and 0.1% on the stability of suspension chia seeds in beverage during storage at ambient temperature for six months. Viscosity, color, zeta potential, suspension of seeds and organoleptic properties were evaluated. Results showed that chia seeds were rich in protein, omega-3 fatty acids and dietary fiber. The addition of 0.05% gellan gum led to improved appearance attributes and the highest stability of suspension of chia seeds for six months, and was the sample which scored highest for overall acceptability compared to the other samples of beverages. Results indicated that using chia seeds with the addition of 0.05% low acyl gellan gum led to the production of fortified mango beverage and mango flavored beverage with high stability for six months.展开更多
[Objectives]This study was conducted to select suitable mixed seed coating agents for improving the quality of"grey-matter"hybrid rice seeds.[Methods]Three different mixed seed coating agents(A,B,C)were used...[Objectives]This study was conducted to select suitable mixed seed coating agents for improving the quality of"grey-matter"hybrid rice seeds.[Methods]Three different mixed seed coating agents(A,B,C)were used to coat the seeds of two varieties(Taiyou 390 and Zhenliangyou 8612)of hybrid rice with different"grey-matter"content(5%,15%,25%),and the results were investigated and compared.[Results]The combinations of treatment B(seed coating agent A+Linong)and treatment C(Manshijin+seed coating agent A)could significantly improve indexes including seed germination potential,germination rate,seed vigor,seedling height,fibrous roots and fresh weight of the two varieties with a"grey-matter"content greater than 15%,but had no significant effects on main root length,dry weight,leaf number and tiller number,and the effects of treatment B was better than those of treatment C.That is to say,mixed seed coating agent B(seed coating agent A+Linong)was suitable for use as a seed coating agent to improve the quality of"grey-matter"seeds.[Conclusions]This study provides a reference plan for the safe use of mixed seed batches with"grey-matter"deterioration.展开更多
Seeds were subjected to three different pre-sowing seed treatments: immersion in lukewarm water for 2 hours, immersion in concentrated sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) for 5 minutes,...Seeds were subjected to three different pre-sowing seed treatments: immersion in lukewarm water for 2 hours, immersion in concentrated sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) for 5 minutes, hilar removal, and a control in which the seeds were sown without being treated. The experiment was laid out in the Completely Randomized Design (CRD) with four replicates and 60 seeds per treatment. Seeds were sown in an improvised Seedbox in October 2019. Germination was monitored daily for one month. The results showed that Mamalis seeds treated with lukewarm water have the earliest germination of twelve days, with a germination percentage of 66.67%. The germination rate of another treatment ranges from 0 - 44 percent, compared to 45 percent for the control treatment. It seems prudent to conclude that to enhance the vegetative propagation methods is to soaking in warm water at 37.5˚C for 2 hours could provide the best growth.展开更多
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when ...The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.展开更多
Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK...Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK2 gene families,were identified from the hemp reference genome,including 7 CsPYL(pyrab-actin resistance1-like,ABA receptor),8 CsPP2CA(group A protein phosphatase 2c),and 7 CsSnRK2(sucrose nonfermenting1-related protein kinase 2).The content of ABA in hemp seeds in germination stage is lower than that in non-germination stage.Exogenous ABA(1 or 10μM)treatment had a significant regulatory effect on the selected PYL,PP2C,SnRK2 gene families.CsAHG3 and CsHAI1 were most significantly affected by exogenous ABA treatment.Yeast two-hybrid experiments were performed to reveal that CsPYL5,CsSnRK2.2,and CsSnRK2.3 could interact with CsPP2CA7 and demonstrate that this interaction was ABA-independent.Our results indicated that CsPYL5,CsSnRK2.2,CsSnRK2.3 and CsPP2CA7 might involve in the ABA signaling transduction pathway of hemp seeds during the hemp seed germination stages.This study suggested that novel genetic views can be brought into investigation of ABA signaling pathway in hemp seeds and lay the foundation for further exploration of the mechanism of hemp seed germination.展开更多
Sesame seeds are a healthy food ingredient and an oil crop for sesame oil production;however,it has recently been recognized as an essential allergenic food by FAO/WHO.This research investigated the relationship betwe...Sesame seeds are a healthy food ingredient and an oil crop for sesame oil production;however,it has recently been recognized as an essential allergenic food by FAO/WHO.This research investigated the relationship between the hot air roasting process(at 120,150,and 180℃ for 10,20,and 30 min)and several quality attributes of sesame seeds since roasting is the key process for preparing sesame seeds for both consumption and oil production.The hot air process followed the central composite design.The changes of sesame in terms of color,sensory properties(odor,texture,color,and taste),allergenicity caused by oleosins(ses i 4 and ses i 5),as well as oil extraction and quality were monitored using a colorimeter,sensory evaluation panelists,ELISA,as well as oil yield and acid value,respectively.Roasting temperature influenced the product quality more than roasting time,although the two processing parameters significantly interacted with each other(P<0.001).Sensory evaluation indicated medium roasting generated attractive flavor,order,appearance,and crispy texture.Allergenicity was high in sesame seeds after high-temperature roasting,according to IgE binding capacity test.Sesame oil extraction was favored by high-temperature roasting,which,however,adversely affected the oil quality.The optimal roasting conditions were 150.5℃ for 15 min for optimized sesame seeds quality in terms of sensory properties and allergenicity,while roasting at 158℃ for 10 min was optimal for sesame oil production.The finding will benefit the sesame seed industry.展开更多
The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism ...The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed.Castor bean(Ricinus communis)is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids,widely applied in industry.In this study,based on castor bean reference genome,three RcWRIs genes(RcWRI1,RcWRI2 and RcWRI3)were identified and the expressed association of RcWRI1 with oil accumulation were determined.Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf,confirming that RcWRI1 activate lipid biosynthesis pathway.Using DNA Affinity Purification sequencing(DAP-seq)technology,we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes.Functionally,these identified genes were mainly involved in diverse metabolism pathways(including lipid biosynthesis).Three cis-elements AW-box([CnTnG](n)7[CG])and AW-boxes like([GnAnC](n)6[GC]/[GnAnC](n)7[G])bound with RcWRI1 were identified.Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development.In particular,yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes.These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development,but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops.展开更多
基金support from the National Key Research and Development Program of China(2021YFA1500401,2021YFA1501202)the National Natural Science Foundation of China(22288101)the 111 Project(B17020)for supporting this work.
文摘Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite.
文摘Physicochemical investigations were performed on seeds of Nymphea lotus and N. micrantha consumed in the Senegal River valley. They revealed a composition similar to that of cereals. In order to estimate their intrinsic quality, the determination of their amino acid, fatty acid and monosaccharids profiles was done. The results indicate that monosaccharides are represented specifically by saccharose (7%) and glucose (0.67%);a predominance of stearic acid and linoleic acid as unsaturated acids (24.86%);arachidic and palmitic acids as the only saturated acid found (11.12%);a good ratio of unsaturated/saturated acid (2.23);a lack of oleic acid, linoleic, palmitoleic, myristic, caprylic acids;a poor-quality index protein due to low quantity amino acids. Nevertheless, all essential amino acids are present in the seeds. The Nymphea sp grains consumed by the populations around the Senegal River valley offer an interesting nutritional quality linked to fatty acids and carbohydrates.
基金Supported by the National Major Special Project for the Cultivation of New Genetically Modified Biological Varieties(Topic ZX08011-003)。
文摘Amaranthus retroflexus L. is a serious and widespread malignant weed in soybean fields in Heilongjiang Province. Exploring the dormancy characteristics of A. retroflexus L. seeds and the physiological response of its seedlings to acifluorfen sodium can provide a basis for further researches on its resistance mechanism. Using newly harvested and stored A. retroflexus L. seeds for one year as experimental materials, the effects of different concentrations of HCl, NaOH, water temperature, gibberellic acid(GA) and polyethylene glycol(PEG) on the dormancy and germination of A. retroflexus L. seeds were studied. The sensitivity of A. retroflexus L.to acifluorfen sodium was determined using bioassay. The effects on leaf chlorophyll content and target enzyme activity were studied at a normal dosage of 360 g a.i. hm^(-2) and a doubling dosage of 720 g a.i. hm^(-2) of acifluorfen sodium. Newly harvested seeds exhibiting dormancy were soaked in water of various temperatures and in different concentrations of NaOH and HCl, which were ineffective in breaking the seed dormancy. GA could break seed dormancy, and the highest seed germination rate reached 93.33% when they were soaked at 3 000 mg·L^(-1) for 72 h and 4 000 mg·L^(-1) for 48 h. The drought stress was simulated with a 15%-25% polyethylene glycol solution, which had no significant effect on the seed germination rate. The GR_(50) value of acifluorfen sodium for A. retroflexus L. was 705.7 g a.i. hm^(-2), which was 1.96 times the recommended dose in the field. After the application of different doses of acifluorfen sodium, the chlorophyll content of A. retroflexus L. reached its minimum value 3 days after treatment(DAT), and then gradually increased. The activity of the target enzyme protoporphyrinogen oxidase(PPO) reached the highest value at 7 DAT under different dosages, and gradually returned to normal levels thereafter. Soaking with gibberellin was an effective method to break seed dormancy. A. retroflexus L. seeds had certain drought resistance during the germination process. A. retroflexus L. was not sensitive to acifluorfen sodium and acifluorfen sodium ether, and could not effectively inhibit the PPO activity, indicating that A. retroflexus L. had target resistance to acifluorfen sodium.
基金supported by the National Natural Science Foundation of China (61604131,62025403)the Natural Science Foundation of Zhejiang Province (LY19F040009)+1 种基金the Fundamental Research Funds of Zhejiang SciTech University (23062120-Y)the Open Project of Key Laboratory of Solar Energy Utilization and Energy Saving Technology of Zhejiang Province (ZJS-OP-2020-07)
文摘Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h.
基金supported by the Degradable Plastics Engineering Research Center of Yunnan Provincial Education Department(KKPU202205001).
文摘Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.
基金The authors would like to thank Harcourt Butler Technical University,Kanpur India for providing infrastructure,guidance,knowledge and support.
文摘Pumpkin belongs to the family of Cucurbitaceae,which comprises several species that has economical as well as agronomical importance.All parts of pumpkin are edible and laden with beneficial neutraceutical compounds.Pumpkin seeds are valuable source protein which can help in eradicating protein malnutrition and lipids(rich in PUFAs)contains essential as well as non essential fatty acids which prevents from various ailments like cancer and other cardiovascular diseases.Since,seeds of pumpkin are abundant in macro(magnesium,phosphorous,potassium,sodium and calcium)and micro minerals(iron,copper,manganese,zinc and selenium),they can be used as an incredible dietary supplement which in turn helps in curbing various deficiency disorders.This review enlightens the characteristics of pumpkin seeds,process of valorization of pumpkin seeds and the effect of processing on their nutritional composition which have been studied currently with the aim to use this wonder seeds for human wellbeing.Pumpkin seeds possess many bioactive compounds like polyphenols,flavonoids,phytosterols and squalene which makes it a lucrative raw material for pharmacological and food industries.Pumpkin seeds work as anti-depressant and helps majorly in the treatment of benign prostate hyperplasia(BHP).Daily consumption of pumpkin seeds can reduce the chances of Alzheimer's and Parkinson's disease.Pumpkin seeds are rich in tocopherols and can be used for oil extraction for edible purposes and utilized in other food formulations for future use.
基金Supported by Saline-alkali Land Control and Soil Fertility Improvement Technology"Jiebangguashuai"Project of Jiangsu Coastal Development Group Co.,Ltd.(2022YHTDJB02).
文摘[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Four high-generation stable rice lines with diverse salt tolerance were employed as test materials,and four NaCl concentration gradients were established for seed soaking treatment.[Results]The seedling survival rate of line 151465 underwent significant alterations after soaking with four different salt concentrations,and the survival rate was the highest after treatment with 1.8%NaCl for 1 d,reaching 65.2%.The average survival rate of other three lines with different salt tolerance reached 62%after soaking with 1.8%NaCl for 1 d,which was significantly higher than those of the 2.2%NaCl and 0%NaCl treatments.[Conclusions]This study provides a basis for reducing the effect of abiotic stress on rice growth and development and improving the utilization rate of saline-alkali land.
文摘The inclusion of composite flours in infant food at weaning time should be a priority for mothers. The aim of this project is to formulate infant flour based on pulp flour enriched with oilcake from these grains after extraction of the oil. To do this, the elements were combined to obtain a regulatory formulation. Micro- and macronutrients, minerals, vitamins and tasting of the prepared porridge were determined. The results obtained were satisfactory. The moisture content of the fruit pulp was determined using oven-drying techniques: 92.2%, carbohydrates 6.00%, lipids 0.3%, ash 0.80%, proteins 1.10%, calcium 19.8%, phosphorus 42.6% and iron 0.4%. Furthermore, the carbohydrate content of flours composed of 5% insertion is 62.9 g to 48.8 g per 100 g, and the protein content of compound flours with 5% insertion is 15.9 g to 28.25 g per 100 g. On the other hand, the vitamin C and E contents of fresh pulp and oilcake are 25 mg, 13 mg and 21 mg respectively. However, only copper and β-carotene from 5% to 30% insertion remain invariant to the different insertion rates, with a value of 25 mg for copper and 0 µg for β-carotene. In addition, a variation in the degree of swelling of weaning flours compared with the standard from 3.95% at 5% insertion to 3.58 at 30% insertion was observed. The solubility of flours increases on the one hand with increases in the degree of insertion of the cakes. Flour formulated so many toward basicity. But the presence of traces of oil containing fatty acids can reduce this basicity. This study may be an alternative of industrial flours in infant nutrition.
文摘Apium graveolens,an annual herb belonging to the family of Apiaceae,is widely distributed in North and South America,Southern Europe,Africa and Asia.Apium graveolens seeds have a rich history in traditional Chinese medicine for treating hypertension,headaches,vertigo and epilepsy.N-butylphthalide,originally extracted from Apium graveolens seeds,represents a first-in-class drug developed independently in China.Its broad pharmacological activities on nervous system disorders have garnered significant attention from researchers globally.This review focuses on the pharmacological research of n-butylphthalide on central nervous system diseases,including ischemic stroke,Alzheimer’s disease,Parkinson’s disease and amyotrophic lateral sclerosis.The purpose is to pave the way for future study on the mechanistic targets of n-butylphthalide.
基金supported by the earmarked fund for CARS (CARS-34)National Key Research and Development Program of China (2022YFD1300804)the Key R&D Project of Sichuan Science and Technology Program(2023YFSY0012)。
文摘Physical dormancy(PY) commonly present in the seeds of higher plants is believed to be responsible for the germination failure by impermeable seed coat in hard seeds of legume species, instead of physiological dormancy(PD). In this study, a non-destructive approach involving multispectral imaging was used to successfully identify hard seeds from non-hard seeds in Medicago sativa, with accuracy as high as96.8%–99.0%. We further adopted multiple-omics strategies to investigate the differences of physiology,metabolomics, methylomics, and transcriptomics in alfalfa hard seeds, with non-hard seeds as control.The hard seeds showed dramatically increased antioxidants and 125 metabolites of significant differences in non-targeted metabolomics analysis, which are enriched in the biosynthesis pathways of flavonoids, lipids and hormones, especially with significantly higher ABA, a hormone known to induce dormancy. In our transcriptomics results, the enrichment pathway of “response to abscisic acid” of differential expressed genes(DEG) supported the key role of ABA in metabolomics results. The methylome analysis identified 54,899, 46,216 and 54,452 differential methylation regions for contexts of CpG, CHG and CHH, and 344 DEGs might be regulated by hypermethylation and hypomethylation of promoter and exon regions, including four ABA-and JA-responsive genes. Among 8% hard seeds in seed lots,24.5% still did not germinate after scarifying seed coat, and were named as non-PY hard seeds.Compared to hard seeds, significantly higher contents of ABA/IAA and ABA/JA were identified in nonPY hard seeds, which indicated the potential presence of PD. In summary, the significantly changed metabolites, gene expressions, and methylations all suggested involvement of ABA responses in hard seeds, and germination failure of alfalfa hard seeds was caused by combinational dormancy(PY + PD),rather than PY alone.
基金supported by the National Key Research and Development Program of China, No. 2016YFC1101603 (to DYZ)the National Natural Science Foundation of China, Nos. 31640045 (to YHW), 81901251 (to ML)the Natural Science Foundation of Beijing of China, No. 7204323 (to ML)
文摘We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level.
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
文摘With the developing of juices and beverages industry, the processors need to bring new nutritional fortified products to capture the market as per the demand of the consumer who needs healthier product. Thus, this study aimed to the production of mango beverage and mango flavored beverage fortified with chia seeds;evaluate the chemical properties of chia seeds and study the effect of adding carboxymethyl cellulose, xanthan gum and low acyl gellan gum at the concentrations of 0.05% and 0.1% on the stability of suspension chia seeds in beverage during storage at ambient temperature for six months. Viscosity, color, zeta potential, suspension of seeds and organoleptic properties were evaluated. Results showed that chia seeds were rich in protein, omega-3 fatty acids and dietary fiber. The addition of 0.05% gellan gum led to improved appearance attributes and the highest stability of suspension of chia seeds for six months, and was the sample which scored highest for overall acceptability compared to the other samples of beverages. Results indicated that using chia seeds with the addition of 0.05% low acyl gellan gum led to the production of fortified mango beverage and mango flavored beverage with high stability for six months.
基金Supported by Changsha Science and Technology Major Project(kh2201219)Special Project of the Central Government Guiding Local Science and Technology Development(2023ZYC010)。
文摘[Objectives]This study was conducted to select suitable mixed seed coating agents for improving the quality of"grey-matter"hybrid rice seeds.[Methods]Three different mixed seed coating agents(A,B,C)were used to coat the seeds of two varieties(Taiyou 390 and Zhenliangyou 8612)of hybrid rice with different"grey-matter"content(5%,15%,25%),and the results were investigated and compared.[Results]The combinations of treatment B(seed coating agent A+Linong)and treatment C(Manshijin+seed coating agent A)could significantly improve indexes including seed germination potential,germination rate,seed vigor,seedling height,fibrous roots and fresh weight of the two varieties with a"grey-matter"content greater than 15%,but had no significant effects on main root length,dry weight,leaf number and tiller number,and the effects of treatment B was better than those of treatment C.That is to say,mixed seed coating agent B(seed coating agent A+Linong)was suitable for use as a seed coating agent to improve the quality of"grey-matter"seeds.[Conclusions]This study provides a reference plan for the safe use of mixed seed batches with"grey-matter"deterioration.
文摘Seeds were subjected to three different pre-sowing seed treatments: immersion in lukewarm water for 2 hours, immersion in concentrated sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) for 5 minutes, hilar removal, and a control in which the seeds were sown without being treated. The experiment was laid out in the Completely Randomized Design (CRD) with four replicates and 60 seeds per treatment. Seeds were sown in an improvised Seedbox in October 2019. Germination was monitored daily for one month. The results showed that Mamalis seeds treated with lukewarm water have the earliest germination of twelve days, with a germination percentage of 66.67%. The germination rate of another treatment ranges from 0 - 44 percent, compared to 45 percent for the control treatment. It seems prudent to conclude that to enhance the vegetative propagation methods is to soaking in warm water at 37.5˚C for 2 hours could provide the best growth.
基金supported by the National Natural Science Foundation of China(31971980,U19A2029)The science and technology innovation Program of Hunan Province,China(2023RC1077)+1 种基金the Agricultural Science and Technology Innovation Foundation of Hunan,China(2022CX55)the Scientific Research Fund of Hunan Provincial Science and Technology Department,China(2021JC0007)。
文摘The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.
基金funded by the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ049)the Scientific Research Project of Hainan Academician Innovation Platform(SQ2021PTZ0052)the National Key R&D Program of China from the Ministry of Science and Technology of China(No.2019YFC1711100).
文摘Abscisic acid(ABA)is involved in regulating diverse biological processes,but its signal transduction genes and roles in hemp seed germination are not well known.Here,the ABA signaling pathway members,PYL,PP2C and SnRK2 gene families,were identified from the hemp reference genome,including 7 CsPYL(pyrab-actin resistance1-like,ABA receptor),8 CsPP2CA(group A protein phosphatase 2c),and 7 CsSnRK2(sucrose nonfermenting1-related protein kinase 2).The content of ABA in hemp seeds in germination stage is lower than that in non-germination stage.Exogenous ABA(1 or 10μM)treatment had a significant regulatory effect on the selected PYL,PP2C,SnRK2 gene families.CsAHG3 and CsHAI1 were most significantly affected by exogenous ABA treatment.Yeast two-hybrid experiments were performed to reveal that CsPYL5,CsSnRK2.2,and CsSnRK2.3 could interact with CsPP2CA7 and demonstrate that this interaction was ABA-independent.Our results indicated that CsPYL5,CsSnRK2.2,CsSnRK2.3 and CsPP2CA7 might involve in the ABA signaling transduction pathway of hemp seeds during the hemp seed germination stages.This study suggested that novel genetic views can be brought into investigation of ABA signaling pathway in hemp seeds and lay the foundation for further exploration of the mechanism of hemp seed germination.
基金The authors would like to thank for the financial supports from the Anhui Key Research and Development Program,China(No.202104a06020016)Major Special Science and Technology Planning Project of Anhui Province,China(No.202203a06020021,No.202003b06020030,No.201903a06020024)the Fundamental Research Funds for the Central Universities(No.PA2022GDGP0031).
文摘Sesame seeds are a healthy food ingredient and an oil crop for sesame oil production;however,it has recently been recognized as an essential allergenic food by FAO/WHO.This research investigated the relationship between the hot air roasting process(at 120,150,and 180℃ for 10,20,and 30 min)and several quality attributes of sesame seeds since roasting is the key process for preparing sesame seeds for both consumption and oil production.The hot air process followed the central composite design.The changes of sesame in terms of color,sensory properties(odor,texture,color,and taste),allergenicity caused by oleosins(ses i 4 and ses i 5),as well as oil extraction and quality were monitored using a colorimeter,sensory evaluation panelists,ELISA,as well as oil yield and acid value,respectively.Roasting temperature influenced the product quality more than roasting time,although the two processing parameters significantly interacted with each other(P<0.001).Sensory evaluation indicated medium roasting generated attractive flavor,order,appearance,and crispy texture.Allergenicity was high in sesame seeds after high-temperature roasting,according to IgE binding capacity test.Sesame oil extraction was favored by high-temperature roasting,which,however,adversely affected the oil quality.The optimal roasting conditions were 150.5℃ for 15 min for optimized sesame seeds quality in terms of sensory properties and allergenicity,while roasting at 158℃ for 10 min was optimal for sesame oil production.The finding will benefit the sesame seed industry.
基金This work was supported by National Natural Science Foundation of China(grant number 31701465)。
文摘The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed.Castor bean(Ricinus communis)is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids,widely applied in industry.In this study,based on castor bean reference genome,three RcWRIs genes(RcWRI1,RcWRI2 and RcWRI3)were identified and the expressed association of RcWRI1 with oil accumulation were determined.Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf,confirming that RcWRI1 activate lipid biosynthesis pathway.Using DNA Affinity Purification sequencing(DAP-seq)technology,we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes.Functionally,these identified genes were mainly involved in diverse metabolism pathways(including lipid biosynthesis).Three cis-elements AW-box([CnTnG](n)7[CG])and AW-boxes like([GnAnC](n)6[GC]/[GnAnC](n)7[G])bound with RcWRI1 were identified.Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development.In particular,yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes.These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development,but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops.