近年来室内燃气事故多发,而燃气用户风险意识淡薄、户内安全检查难度大。针对现行室内燃气安全管理技术多为静态主观评估的局限性,构建了基于模糊Petri网(Fuzzy Petri Net,FPN)的风险计算规则,提出了结合粒子群优化算法(Particles Swarm...近年来室内燃气事故多发,而燃气用户风险意识淡薄、户内安全检查难度大。针对现行室内燃气安全管理技术多为静态主观评估的局限性,构建了基于模糊Petri网(Fuzzy Petri Net,FPN)的风险计算规则,提出了结合粒子群优化算法(Particles Swarm Optimization,PSO)和FPN的室内燃气泄漏动态风险评估模型。首先,应用Petri网的直观图像描述和异步并发处理能力建立室内燃气泄漏事故风险演化的拓扑结构模型,借助FPN的模糊推理能力处理风险传播的不确定性;然后,根据燃气运维数据,融合PSO动态更新初始参数,提高风险评估的准确性。结果表明,基于PSO-FPN的室内风险评估方法可弱化燃气公司安检人员分析的主观不确定性,更为准确地量化风险因子演化过程,实现室内燃气泄漏风险的动态分析,有效支持户内燃气泄漏风险管控。展开更多
针对上肢肌音信号(Mechanomyography,MMG)动作识别准确率不高的问题,提出一种基于粒子群算法(PSO)与长短期记忆网络相结合的混合模型(Particle Swarm Optimization-Long Short Term Memory,PSO-LSTM)的动作识别方法。采用5通道传感器对...针对上肢肌音信号(Mechanomyography,MMG)动作识别准确率不高的问题,提出一种基于粒子群算法(PSO)与长短期记忆网络相结合的混合模型(Particle Swarm Optimization-Long Short Term Memory,PSO-LSTM)的动作识别方法。采用5通道传感器对受试者进行上肢肌音信号采集,使用巴特沃斯滤波(Butterworth Filter)等方法对肌音信号进行预处理,并进行特征提取;构建基于PSO-LSTM的上肢肌音信号识别模型并进行模型训练和测试;最后从不同测度对比了长短期记忆(LSTM)模型、麻雀搜索算法(Sparrow Search Algorithm,SSA)优化的LSTM模型(Sparrow Search Algorithm-Long Short Term Memory, SSA-LSTM)以及PSO-LSTM模型的实验结果。结果表明,PSO-LSTM模型的准确度均高于LSTM、 SSA-LSTM模型,达到96.9%左右,在迭代损失、迭代速度等方面也优于LSTM、SSA-LSTM模型,从而证明了该模型用于上肢肌音信号识别的优越性。展开更多
文摘近年来室内燃气事故多发,而燃气用户风险意识淡薄、户内安全检查难度大。针对现行室内燃气安全管理技术多为静态主观评估的局限性,构建了基于模糊Petri网(Fuzzy Petri Net,FPN)的风险计算规则,提出了结合粒子群优化算法(Particles Swarm Optimization,PSO)和FPN的室内燃气泄漏动态风险评估模型。首先,应用Petri网的直观图像描述和异步并发处理能力建立室内燃气泄漏事故风险演化的拓扑结构模型,借助FPN的模糊推理能力处理风险传播的不确定性;然后,根据燃气运维数据,融合PSO动态更新初始参数,提高风险评估的准确性。结果表明,基于PSO-FPN的室内风险评估方法可弱化燃气公司安检人员分析的主观不确定性,更为准确地量化风险因子演化过程,实现室内燃气泄漏风险的动态分析,有效支持户内燃气泄漏风险管控。
文摘针对上肢肌音信号(Mechanomyography,MMG)动作识别准确率不高的问题,提出一种基于粒子群算法(PSO)与长短期记忆网络相结合的混合模型(Particle Swarm Optimization-Long Short Term Memory,PSO-LSTM)的动作识别方法。采用5通道传感器对受试者进行上肢肌音信号采集,使用巴特沃斯滤波(Butterworth Filter)等方法对肌音信号进行预处理,并进行特征提取;构建基于PSO-LSTM的上肢肌音信号识别模型并进行模型训练和测试;最后从不同测度对比了长短期记忆(LSTM)模型、麻雀搜索算法(Sparrow Search Algorithm,SSA)优化的LSTM模型(Sparrow Search Algorithm-Long Short Term Memory, SSA-LSTM)以及PSO-LSTM模型的实验结果。结果表明,PSO-LSTM模型的准确度均高于LSTM、 SSA-LSTM模型,达到96.9%左右,在迭代损失、迭代速度等方面也优于LSTM、SSA-LSTM模型,从而证明了该模型用于上肢肌音信号识别的优越性。