期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
Binary Fruit Fly Swarm Algorithms for the Set Covering Problem 被引量:1
1
作者 Broderick Crawford Ricardo Soto +7 位作者 Hanns de la Fuente Mella Claudio Elortegui Wenceslao Palma Claudio Torres-Rojas Claudia Vasconcellos-Gaete Marcelo Becerra Javier Pena Sanjay Misra 《Computers, Materials & Continua》 SCIE EI 2022年第6期4295-4318,共24页
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so... Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost. 展开更多
关键词 Set covering problem fruit fly swarm algorithm metaheuristics binarization methods combinatorial optimization problem
下载PDF
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
2
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 Optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
下载PDF
Synergistic Swarm Optimization Algorithm
3
作者 Sharaf Alzoubi Laith Abualigah +3 位作者 Mohamed Sharaf Mohammad Sh.Daoud Nima Khodadadi Heming Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2557-2604,共48页
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima... This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm. 展开更多
关键词 Synergistic swarm optimization algorithm optimization algorithm METAHEURISTIC engineering problems benchmark functions
下载PDF
Enhanced UAV Pursuit-Evasion Using Boids Modelling:A Synergistic Integration of Bird Swarm Intelligence and DRL
4
作者 Weiqiang Jin Xingwu Tian +3 位作者 Bohang Shi Biao Zhao Haibin Duan Hao Wu 《Computers, Materials & Continua》 SCIE EI 2024年第9期3523-3553,共31页
TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving i... TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions. 展开更多
关键词 UAV pursuit-evasion swarm intelligence algorithm Boids model deep reinforcement learning self-play training
下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
5
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
6
作者 Shuai Zhou Dazhi Wang +2 位作者 Yongliang Ni Keling Song Yanming Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期2187-2207,共21页
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame... In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness. 展开更多
关键词 Transformation function filled function fuzzy particle swarm optimization algorithm permanent magnet synchronous motor parameter identification
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
7
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach 被引量:1
8
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi Manar Ahmed Hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
下载PDF
UAV penetration mission path planning based on improved holonic particle swarm optimization
9
作者 LUO Jing LIANG Qianchao LI Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期197-213,共17页
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr... To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods. 展开更多
关键词 path planning network radar holonic structure particle swarm algorithm(PSO) predictive control model
下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
10
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Thermal Properties Reconstruction and Temperature Fields in Asphalt Pavements: Inverse Problem and Optimisation Algorithms
11
作者 Zhonghai Jiang Qian Wang +1 位作者 Liangbing Zhou Chun Xiao 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1693-1708,共16页
A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence.... A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence.Furthermore,in order to improve the calculation accuracy a swarm intelligence optimization algorithm is also exploited to inversely analyze the laws by which the thermal physical parameters of the asphalt pavement materials change with temperature.Using the basic cuckoo and the gray wolf algorithms,an adaptive hybrid optimization algorithm is obtained and used to determine the relationship between the thermal diffusivity of two types of asphalt pavement materials and the temperature.As shown by the results,the prediction accuracy achievable with this approach is higher than that of the linear model. 展开更多
关键词 Asphalt pavement temperature field swarm intelligence optimization algorithm PREDICTION
下载PDF
Multi-Strategy-Driven Salp Swarm Algorithm for Global Optimization
12
作者 Zhiwei Gao Bo Wang 《Journal of Computer and Communications》 2023年第7期88-117,共30页
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o... In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems. 展开更多
关键词 Salp swarm Algorithm (SSA) Levy Flight Brownian Motion Location Update Simulation Experiment
下载PDF
Neural network hyperparameter optimization based on improved particle swarm optimization
13
作者 谢晓燕 HE Wanqi +1 位作者 ZHU Yun YU Jinhao 《High Technology Letters》 EI CAS 2023年第4期427-433,共7页
Hyperparameter optimization is considered as one of the most challenges in deep learning and dominates the precision of model in a certain.Recent proposals tried to solve this issue through the particle swarm optimiza... Hyperparameter optimization is considered as one of the most challenges in deep learning and dominates the precision of model in a certain.Recent proposals tried to solve this issue through the particle swarm optimization(PSO),but its native defect may result in the local optima trapped and convergence difficulty.In this paper,the genetic operations are introduced to the PSO,which makes the best hyperparameter combination scheme for specific network architecture be located easier.Spe-cifically,to prevent the troubles caused by the different data types and value scopes,a mixed coding method is used to ensure the effectiveness of particles.Moreover,the crossover and mutation opera-tions are added to the process of particles updating,to increase the diversity of particles and avoid local optima in searching.Verified with three benchmark datasets,MNIST,Fashion-MNIST,and CIFAR10,it is demonstrated that the proposed scheme can achieve accuracies of 99.58%,93.39%,and 78.96%,respectively,improving the accuracy by about 0.1%,0.5%,and 2%,respectively,compared with that of the PSO. 展开更多
关键词 hyperparameter optimization particle swarm optimization(PSO)algorithm neu-ral network
下载PDF
Expressway traffic flow prediction using chaos cloud particle swarm algorithm and PPPR model 被引量:2
14
作者 赵泽辉 康海贵 李明伟 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期328-335,共8页
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf... Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting. 展开更多
关键词 expressway traffic flow forecasting projectionpursuit regression particle swarm algorithm chaoticmapping cloud model
下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:1
15
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
考虑混合工艺的自动化码头多设备资源协同调度优化模型和算法设计
16
作者 初良勇 梁冬 +1 位作者 周于佩 章嘉文 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期479-490,共12页
Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the comple... Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals. 展开更多
关键词 Automated terminal Collaborative scheduling Hybrid process Simulated annealing particle swarm algorithm UNCERTAINTY Scheduling Solutions
下载PDF
Scheduling optimization for UAV communication coverage using virtual force-based PSO model
17
作者 Jianguo Sun Wenshan Wang +2 位作者 Sizhao Li Qingan Da Lei Chen 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1103-1112,共10页
When the ground communication base stations in the target area are severely destroyed,the deployment of Unmanned Aerial Vehicle(UAV)ad hoc networks can provide people with temporary communication services.Therefore,it... When the ground communication base stations in the target area are severely destroyed,the deployment of Unmanned Aerial Vehicle(UAV)ad hoc networks can provide people with temporary communication services.Therefore,it is necessary to design a multi-UAVs cooperative control strategy to achieve better communication coverage and lower energy consumption.In this paper,we propose a multi-UAVs coverage model based on Adaptive Virtual Force-directed Particle Swarm Optimization(AVF-PSO)strategy.In particular,we first introduce the gravity model into the traditional Particle Swarm Optimization(PSO)algorithm so as to increase the probability of full coverage.Then,the energy consumption is included in the calculation of the fitness function so that maximum coverage and energy consumption can be balanced.Finally,in order to reduce the communication interference between UAVs,we design an adaptive lift control strategy based on the repulsion model to reduce the repeated coverage of multi-UAVs.Experimental results show that the proposed coverage strategy based on gravity model outperforms the existing state-of-the-art approaches.For example,in the target area of any size,the coverage rate and the repeated coverage rate of the proposed multi-UAVs scheduling are improved by 6.9–29.1%,and 2.0–56.1%,respectively.Moreover,the proposed scheduling algorithm is high adaptable to diverse execution environments.©2022 Published by Elsevier Ltd. 展开更多
关键词 Multi-UAVs Ad hoc network Area collaborative coverage Gravity model swarm optimization algorithm Random topology
下载PDF
Effective approach for conformal subarray design based on maximum entropy of planar mappings
18
作者 Xiao-Dong Zheng Sheng-Teng Shi +3 位作者 Jun Ou-Yang Feng Yang Qammer Abbasi Abubakar Sharif 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期16-25,共10页
In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feas... In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feasible solution of first-level subarray tiling and employs the particle swarm algorithm to optimize the conformal array subarray tiling scheme with the maximum entropy of the planar mapping as the fitness function.Subsequently,convex optimization is applied to optimize the subarray amplitude phase.Data results verify that the method can effectively find the optimal conformal array tiling scheme. 展开更多
关键词 Conformal array Irregular arrays Particle swarm optimal algorithm Maximum entropy model
下载PDF
Comprehensive Rainstorm Intensity Formula Based on Particle Swarm Algorithm
19
作者 赵吉武 邹长武 卢晓宁 《Meteorological and Environmental Research》 CAS 2010年第9期1-3,14,共4页
[Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to o... [Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to optimize the parameters of uniform comprehensive rainstorm intensity formula in every return period and directly construct the comprehensive rainstorm intensity formula.Moreover,took the comprehensive rainstorm intensity formula which was established by the hourly precipitation data in wuhu City as an example,the calculation result compared with the computed result of traditional method.[Result] The calculation result precision of particle swarm algorithm was higher than the traditional method,and the calculation process was simpler.[Conclusion] The particle swarm algorithm could directly construct the comprehensive rainstorm intensity formula. 展开更多
关键词 Particle swarm algorithm Comprehensive rainstorm intensity formula OPTIMIZATION China
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
20
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部