A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe...A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.展开更多
Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimizatio...Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameterization and Time Diseretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.展开更多
The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work pr...The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work proposes a strategy dominance mechanism of autonomous collaboration in unmanned swarm within the framework of public goods game. It starts with the requirement analysis of autonomous collaboration in unmanned swarm;and an aspiration-driven multiplayer evolutionary game model is established based on the requirement. Then the average abundance function and strategy dominance condition of the model are constructed by theoretical derivation. Furthermore, the evolutionary mechanism of parameter adjustment in swarm cooperation is revealed via simulation,and the influences of the multiplication factor r, aspiration levelα, threshold m and other parameters on the strategy dominance conditions were simulated for both linear and threshold public goods games(PGGs) to determine the strategy dominance characteristics;Finally, deliberate proposals are suggested to provide a meaningful exploration in the actual control of unmanned swarm cooperation.展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
基金supported by National Natural Science Foundation of China(61425008,61333004,61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(2013585104)
基金jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No. 2016ZC15008)
文摘A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.
基金supported by the Natural Science Foundation of China (Grant No.60604009)the Aero-nautical Science Foundation of China (Grant No. 2006ZC51039)+1 种基金the Beijing NOVA Program Foundation of China (Grant No. 2007A017)the Open Fund of the Provincial Key Laboratory for Information Proc-essing Technology, Suzhou University (Grant No. KJS0821)
文摘Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameterization and Time Diseretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.
基金supported by the National Natural Science Foundation of China(71901217)the National Key R&D Program of China(2018YFC0806900).
文摘The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work proposes a strategy dominance mechanism of autonomous collaboration in unmanned swarm within the framework of public goods game. It starts with the requirement analysis of autonomous collaboration in unmanned swarm;and an aspiration-driven multiplayer evolutionary game model is established based on the requirement. Then the average abundance function and strategy dominance condition of the model are constructed by theoretical derivation. Furthermore, the evolutionary mechanism of parameter adjustment in swarm cooperation is revealed via simulation,and the influences of the multiplication factor r, aspiration levelα, threshold m and other parameters on the strategy dominance conditions were simulated for both linear and threshold public goods games(PGGs) to determine the strategy dominance characteristics;Finally, deliberate proposals are suggested to provide a meaningful exploration in the actual control of unmanned swarm cooperation.
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.