期刊文献+
共找到2,166篇文章
< 1 2 109 >
每页显示 20 50 100
Enhanced UAV Pursuit-Evasion Using Boids Modelling:A Synergistic Integration of Bird Swarm Intelligence and DRL
1
作者 Weiqiang Jin Xingwu Tian +3 位作者 Bohang Shi Biao Zhao Haibin Duan Hao Wu 《Computers, Materials & Continua》 SCIE EI 2024年第9期3523-3553,共31页
TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving i... TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions. 展开更多
关键词 UAV pursuit-evasion swarm intelligence algorithm Boids model deep reinforcement learning self-play training
下载PDF
Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis
2
作者 Hend S. Salem Mohamed A. Mead Ghada S. El-Taweel 《Journal of Computer and Communications》 2024年第3期160-183,共24页
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne... Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results. 展开更多
关键词 Big COVID-19 Data Machine Learning Hyperparameter Optimization Particle swarm Optimization Computational intelligence
下载PDF
Muti-Fusion Swarm Intelligence Optimization Algorithm in Base Station Coverage Optimization Problems
3
作者 Zhenyu Yan Haotian Bian 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2241-2257,共17页
As millimeter waves will be widely used in the Internet of Things(IoT)and Telematics to provide high bandwidth communication and mass connectivity,the coverage optimization of base stations can effectively improve the... As millimeter waves will be widely used in the Internet of Things(IoT)and Telematics to provide high bandwidth communication and mass connectivity,the coverage optimization of base stations can effectively improve the quality of communication services.How to optimize the convergence speed of the base station coverage solution is crucial for IoT service providers.This paper proposes the Muti-Fusion Sparrow Search Algorithm(MFSSA)optimize the situation to address the problem of discrete coverage maximization and rapid convergence.Firstly,the initial swarm diversity is enriched using a sine chaotic map,and dynamic adaptive weighting is added to the discoverer location update strategy to improve the global search capability.Diverse swarms have a more remarkable ability to forage for food and avoid predation and are less likely to fall into a“precocious”state.Such a swarm is very suitable for solving NP-hard problems.Secondly,an elite opposition-based learning strategy is added to expand the search range of the algorithm,and a t-distribution-based one-fifth rule is introduced to reduce the probability of falling into a local optimum.This fusion mutation strategy can significantly optimize the adaptability and searchability of the algorithm.Finally,the experimental results show that the MFSSA algorithm can effectively improve the coverage of the deployment scheme in the base station coverage optimization problem,and the convergence speed is better than other algorithms.MFSSA is improved by more than 10%compared to the original algorithm. 展开更多
关键词 Base station coverage swarm intelligence dynamic adaptive coverage optimization
下载PDF
Swarm intelligence optimization and its application in geophysical data inversion 被引量:30
4
作者 Yuan Sanyi Wang Shangxu Tian Nan 《Applied Geophysics》 SCIE CSCD 2009年第2期166-174,共9页
The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swa... The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions. 展开更多
关键词 swarm intelligence optimization geophysical inversion MULTIMODAL particle swarm optimization algorithm
下载PDF
基于SI-SB系统安全模型的多层级边缘智能管控模式 被引量:1
5
作者 张充 张伟 +2 位作者 李泽亚 赵挺生 张耀庭 《中国安全科学学报》 CAS CSCD 北大核心 2024年第1期17-26,共10页
为探索信息化、智能化技术赋能下的创新型安全生产管控模式,从安全信息学的角度分析安全管控过程中的信息流动特点,提出安全生产多层级边缘智能管控模式;基于安全信息-安全行为(SI-SB)系统安全模型分析安全管控过程中安全决策偏差和滞... 为探索信息化、智能化技术赋能下的创新型安全生产管控模式,从安全信息学的角度分析安全管控过程中的信息流动特点,提出安全生产多层级边缘智能管控模式;基于安全信息-安全行为(SI-SB)系统安全模型分析安全管控过程中安全决策偏差和滞后的机制,提出安全管控系统性能改进的思路;结合安全生产组织管理体系特点和数字化技术优势,阐述数字化技术在信息感知传递、安全信息解释和安全行为引导等3个方面的赋能依据,以及数字化感知、智能化决策和多层级管控等3个方面的赋能途径,并提出具备智能决策、敏捷响应、弹性扩展和人机协同特点的安全生产多层级边缘智能管控模式;在紧急事件、短周期管控、长周期管控3类场景中,对应用智能管控模式前后的安全事件响应进行时效性计算和对比。结果表明:所提出的多层级边缘智能管控模式能够显著提高安全管控效能。 展开更多
关键词 安全信息-安全行为(si-SB)系统安全模型 多层级边缘智能管控 管控模式 安全生产 安全信息学
下载PDF
Swarm intelligence for mixed-variable design optimization 被引量:7
6
作者 郭创新 胡家声 +1 位作者 叶彬 曹一家 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期851-860,共10页
Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal... Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness. 展开更多
关键词 swarm intelligence Mixed variables Global optimization Engineering design optimization
下载PDF
Swarm Intelligence Based Routing with Black Hole Attack Detection in MANET
7
作者 S.A.Arunmozhi S.Rajeswari Y.Venkataramani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2337-2347,共11页
Mobile Ad hoc Network(MANET)possesses unique characteristics which makes it vulnerable to security threats.In MANET,it is highly challenging to protect the nodes from cyberattacks.Power conservation improves both life... Mobile Ad hoc Network(MANET)possesses unique characteristics which makes it vulnerable to security threats.In MANET,it is highly challenging to protect the nodes from cyberattacks.Power conservation improves both life time of nodes as well as the network.Computational capabilities and memory constraints are critical issues in the implementation of cryptographic techniques.Energy and security are two important factors that need to be considered for improving the performance of MANET.So,the incorporation of an energy efficient secure routing protocol becomes inevitable to ensure appropriate action upon the network.The nodes present in a network are limited due to energy constraints and secure communication protocols.Hence,the current study proposed an energy-efficient defense scheme using swarm intelligence approach.The functioning of the proposed method was validated under NS2 simulation.The experimental results confirmed that the proposed work outperformed existing methods in terms of packet delivery ratio,average end-to-end delay and throughput. 展开更多
关键词 ENERGY SECURITY swarm intelligence OPTIMIZATION ROUTING
下载PDF
Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms 被引量:3
8
作者 Gopi Krishna Durbhaka Barani Selvaraj +3 位作者 Mamta Mittal Tanzila Saba Amjad Rehman Lalit Mohan Goyal 《Computers, Materials & Continua》 SCIE EI 2021年第2期2041-2059,共19页
Nowadays,renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs.Most of the renewable energy sources involve turbines and their operation and maint... Nowadays,renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs.Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task.Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches,practices and technology during the last decade.Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect.This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory(LSTM)model in classifying the faults from the vibration signals data acquired from the gearbox.This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision.The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods. 展开更多
关键词 GEARBOX long short term memory fault classification swarm intelligence OPTIMIZATION condition monitoring
下载PDF
Swarm intelligence based dynamic obstacle avoidance for mobile robots under unknown environment using WSN 被引量:4
9
作者 薛晗 马宏绪 《Journal of Central South University of Technology》 EI 2008年第6期860-868,共9页
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem... To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time. 展开更多
关键词 wireless sensor network dynamic obstacle avoidance mobile robot ant colony algorithm swarm intelligence path planning NAVIGATION
下载PDF
Sigmoidal Particle Swarm Optimization for Twitter Sentiment Analysis
10
作者 Sandeep Kumar Muhammad Badruddin Khan +3 位作者 Mozaherul Hoque Abul Hasanat Abdul Khader Jilani Saudagar Abdullah AlTameem Mohammed AlKhathami 《Computers, Materials & Continua》 SCIE EI 2023年第1期897-914,共18页
Social media,like Twitter,is a data repository,and people exchange views on global issues like the COVID-19 pandemic.Social media has been shown to influence the low acceptance of vaccines.This work aims to identify p... Social media,like Twitter,is a data repository,and people exchange views on global issues like the COVID-19 pandemic.Social media has been shown to influence the low acceptance of vaccines.This work aims to identify public sentiments concerning the COVID-19 vaccines and better understand the individual’s sensitivities and feelings that lead to achievement.This work proposes a method to analyze the opinion of an individual’s tweet about the COVID-19 vaccines.This paper introduces a sigmoidal particle swarm optimization(SPSO)algorithm.First,the performance of SPSO is measured on a set of 12 benchmark problems,and later it is deployed for selecting optimal text features and categorizing sentiment.The proposed method uses TextBlob and VADER for sentiment analysis,CountVectorizer,and term frequency-inverse document frequency(TF-IDF)vectorizer for feature extraction,followed by SPSO-based feature selection.The Covid-19 vaccination tweets dataset was created and used for training,validating,and testing.The proposed approach outperformed considered algorithms in terms of accuracy.Additionally,we augmented the newly created dataset to make it balanced to increase performance.A classical support vector machine(SVM)gives better accuracy for the augmented dataset without a feature selection algorithm.It shows that augmentation improves the overall accuracy of tweet analysis.After the augmentation performance of PSO and SPSO is improved by almost 7%and 5%,respectively,it is observed that simple SVMwith 10-fold cross-validation significantly improved compared to the primary dataset. 展开更多
关键词 Twitter data analysis sentiment analysis social media analytics swarm intelligence COVID-19 vaccine
下载PDF
Cat Swarm with Fuzzy Cognitive Maps for Automated Soil Classification
11
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Manal Al Faraj Majed Alsanea Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1419-1432,共14页
Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of... Accurate soil prediction is a vital parameter involved to decide appro-priate crop,which is commonly carried out by the farmers.Designing an auto-mated soil prediction tool helps to considerably improve the efficacy of the farmers.At the same time,fuzzy logic(FL)approaches can be used for the design of predictive models,particularly,Fuzzy Cognitive Maps(FCMs)have involved the concept of uncertainty representation and cognitive mapping.In other words,the FCM is an integration of the recurrent neural network(RNN)and FL involved in the knowledge engineering phase.In this aspect,this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classifica-tion(FCMCSO-ASC)technique.The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil.To accomplish this,the FCMCSO-ASC technique incorporates local diagonal extrema pattern(LDEP)as a feature extractor for producing a collection of feature vectors.In addition,the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm.For exam-ining the enhanced soil classification outcomes of the FCMCSO-ASC technique,a series of simulations were carried out on benchmark dataset and the experimen-tal outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%. 展开更多
关键词 Soil classification intelligent models fuzzy cognitive maps cat swarm optimization fuzzy logic
下载PDF
An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials
12
作者 Abidhan Bardhan Raushan Kumar Singh +1 位作者 Mohammed Alatiyyah Sulaiman Abdullah Alateyah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1521-1555,共35页
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf o... This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness. 展开更多
关键词 Metakaolin-contained cemented materials compressive strength extreme learning machine grey wolf optimizer swarm intelligence uncertainty analysis artificial intelligence
下载PDF
Revolutionary entrapment model of uniformly distributed swarm robots in morphogenetic formation
13
作者 Chen Wang Zhaohui Shi +3 位作者 Minqiang Gu Weicheng Luo Xiaomin Zhu Zhun Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期496-509,共14页
This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regul... This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method. 展开更多
关键词 swarm intelligence Revolutionary entrapment FLOCKING ROBOTS Gene regulatory network Vicsek-model Entrapping multiple targets
下载PDF
An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm
14
作者 Chen Zhang Liming Liu +5 位作者 Yufei Yang Yu Sun Jiaxu Ning Yu Zhang Changsheng Zhang Ying Guo 《Computers, Materials & Continua》 SCIE EI 2024年第6期5201-5223,共23页
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in... The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability. 展开更多
关键词 Flying foxes optimization(FFO)algorithm opposition-based learning niching techniques swarm intelligence metaheuristics evolutionary algorithms
下载PDF
An Analysis of Foraging and Echolocation Behavior of Swarm Intelligence Algorithms in Optimization: ACO, BCO and BA
15
作者 Tanzila Islam Md Ezharul Islam Mohammad Raihan Ruhin 《International Journal of Intelligence Science》 2018年第1期1-27,共27页
Optimization techniques are stimulated by Swarm Intelligence wherever the target is to get a decent competency of a problem. The knowledge of the behavior of animals or insects has a variety of models in Swarm Intelli... Optimization techniques are stimulated by Swarm Intelligence wherever the target is to get a decent competency of a problem. The knowledge of the behavior of animals or insects has a variety of models in Swarm Intelligence. Swarm Intelligence has become a potential technique for evolving many robust optimization problems. Researchers have developed various algorithms by modeling the behaviors of the different swarm of animals or insects. This paper explores three existing meta-heuristic methods named as Ant Colony Optimization (ACO), Bee Colony Optimization (BCO) and Bat Algorithm (BA). Ant Colony Optimization was stimulated by the nature of ants. Bee Colony Optimization was inspired by the plundering behavior of honey bees. Bat Algorithm was emerged on the echolocation characteristics of micro bats. This study analyzes the problem-solving behavior of groups of relatively simple agents wherein local interactions among agents, are either directly or indirectly through the environment. The scope of this paper is to explore the characteristics of swarm intelligence as well as its advantages, limitations and application areas, and subsequently, to explore the behavior of ants, bees and micro bats along with its most popular variants. Furthermore, the behavioral comparison of these three techniques has been analyzed and tried to point out which technique is better for optimization among them in Swarm Intelligence. From this, the paper can help to understand the most appropriate technique for optimization according to their behavior. 展开更多
关键词 OPTIMIZATION swarm intelligence COLONY FORAGING ECHOLOCATION
下载PDF
A Cluster Based QoS-Aware Service Discovery Architecture Using Swarm Intelligence
16
作者 E. Christopher Siddarth K. Seetharaman 《Communications and Network》 2013年第2期161-168,共8页
The existing mobile service discovery approaches do not completely address the issues of service selection and the robustness faced to mobility. The infrastructure of mobile service must be QoS-aware plus context-awar... The existing mobile service discovery approaches do not completely address the issues of service selection and the robustness faced to mobility. The infrastructure of mobile service must be QoS-aware plus context-aware (i.e.) aware of the user’s required-QoS and the QoS offered by the other networks in user’s context. In this paper, we propose a cluster based QoS-aware service discovery architecture using swarm intelligence. Initially, in this architecture, the client sends a service request together with its required QoS parameters like power, distance, CPU speed etc. to its source cluster head. Swarm intelligence is used to establish the intra and inter cluster shortest path routing. Each cluster head searches the QoS aware server with matching QoS constraints by means of a service table and a server table. The QoS aware server is selected to process the service request and to send the reply back to the client. By simulation results, we show that the proposed architecture can attain a good success rate with reduced delay and energy consumption, since it satisfies the QoS constraints. 展开更多
关键词 QOS-AWARE Ant COLONY Optimization (ACO) swarm intelligence Mobile Ad HOC Networks (MANETs)
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
17
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION Particle swarm intelligence (PSO) Ant Colony OPTIMIZATION (ACO) Genetic Algorithm (GA)
下载PDF
A Review on Swarm Intelligence and Evolutionary Algorithms for Solving Flexible Job Shop Scheduling Problems 被引量:37
18
作者 Kaizhou Gao Zhiguang Cao +3 位作者 Le Zhang Zhenghua Chen Yuyan Han Quanke Pan 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第4期904-916,共13页
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,... Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions. 展开更多
关键词 EVOLUTIONARY algorithm flexible JOB SHOP scheduling REVIEW swarm intelligence
下载PDF
A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:Applications and Trends 被引量:39
19
作者 Jun Tang Gang Liu Qingtao Pan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1627-1643,共17页
Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th... Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments. 展开更多
关键词 Ant colony optimization(ACO) artificial bee colony(ABC) artificial fish swarm(AFS) bacterial foraging optimization(BFO) optimization particle swarm optimization(PSO) swarm intelligence
下载PDF
SWARM INTELLIGENCE BASED DYNAMIC REAL-TIME SCHEDULING APPROACH FOR SEMICONDUCTOR WAFER FAB 被引量:4
20
作者 LiLi FeiQiao WuQidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期71-74,共4页
Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling ... Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance. 展开更多
关键词 swarm intelligence Ant colonies PHEROMONE Ant agents Semiconductor waferfab Dynamic real-time scheduling
下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部