The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of a...The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.展开更多
Background This paper introduces a versatile edutainment platform based on a swarm robotics system that can support multiple interaction methods.We aim to create a re-usable open-ended tangible tool for a variety of e...Background This paper introduces a versatile edutainment platform based on a swarm robotics system that can support multiple interaction methods.We aim to create a re-usable open-ended tangible tool for a variety of educational and entertainment scenarios by utilizing the unique advantages of swarm robots such as flexible mobility,mutual perception,and free control of robot number.Methods Compared with the tangible user interface,the swarm user interface(SUI)possesses more flexible locomotion and more controllable widgets.However,research on SUI is still limited to system construction,and the upper interaction modes along with vivid applications have not been sufficiently studied.Results This study illustrates possible interaction modes for swarm robotics and feasible application scenarios based on these fundamental interaction modes.We also discuss the implementation of swarm robotics(including software and hardware),then design several simple experiments to verify the location accuracy of the swarm robotics system.展开更多
A tumor is referred to as“intracranial hard neoplasm”if it grows near the brain or central spinal vessel(neoplasm).In certain cases,it is possible that the responsible cells are neurons situated deep inside the brai...A tumor is referred to as“intracranial hard neoplasm”if it grows near the brain or central spinal vessel(neoplasm).In certain cases,it is possible that the responsible cells are neurons situated deep inside the brain’s structure.This article discusses a strategy for halting the progression of brain tumor.A precise and accurate analytical model of brain tumors is the foundation of this strategy.It is based on an algorithm known as kill chain interior point(KCIP),which is the result of a merger of kill chain and interior point algorithms,as well as a precise and accurate analytical model of brain tumors.The inability to obtain a clear picture of tumor cell activity is the biggest challenge in this endeavor.Based on the motion of swarm robots,which are considered a subset of artificial intelligence,this article proposes a new notion of this kind of behavior,which may be used in various situations.The KCIP algorithm that follows is used in the analytical model to limit the development of certain cell types.According to the findings,it seems that different KCIP speed ratios are beneficial in preventing the development of brain tumors.It is hoped that this study will help researchers better understand the behavior of brain tumors,so as to develop a new drug that is effective in eliminating the tumor cells.展开更多
This paper proposes a solution to controls warm robots in an effort to avoid obstacles, moving to the goal by the method of Null Space based Behavior (NSB) control of an individual in the swarm. This paper also provid...This paper proposes a solution to controls warm robots in an effort to avoid obstacles, moving to the goal by the method of Null Space based Behavior (NSB) control of an individual in the swarm. This paper also provides the stability analysis of the converging process by investigating the relationship between single agents, and the analysis result is proved by using the Lyapunov theory. Finally, the simulation results in two-dimensional space have confirmed the obtained theoretical results.展开更多
Enhancing the adaptability of Unmanned Aerial Vehicle(UAV)swarm control models to cope with different complex working scenarios is an important issue in this research field.To achieve this goal,control model with tuna...Enhancing the adaptability of Unmanned Aerial Vehicle(UAV)swarm control models to cope with different complex working scenarios is an important issue in this research field.To achieve this goal,control model with tunable parameters is a widely adopted approach.In this article,an improved UAV swarm control model with tunable parameters namely Multi-Objective O-Flocking(MO O-Flocking)is proposed.The MO O-Flocking model is a combination of a multi rule control system and a virtual-physical-law based control model with tunable parameters.To achieve multi-objective parameter tuning,a multi-objective parameter tuning method namely Improved Strength Pareto Evolutionary Algorithm 2(ISPEA2)is designed.Simulation experiment scenarios include six target orientation scenarios with different kinds of objectives.Experimental results show that both the ISPEA2 algorithm and MO O-Flocking control model have good performance in their experiment scenarios.展开更多
A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by t...A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.展开更多
Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search,...Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search, resource consumption, and resource recovery. In an environmental compression–expansion cycle, the swarm emerges a series of boundary-dependent phase transitions, and the whole evolution process is time-reversal symmetry-breaking;we call this phenomenon “orderly hysteresis”. We present the influence of the environmental recovery rate on the dynamic collective behavior of the swarm.展开更多
In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustme...In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustment. However, in active matter systems, the self-propulsion nature of active particles endows the systems with the ability to induce unique collectivestate transitions by spontaneously regulating individual properties to alter the overall states. Based on an innovative robot-swarm experimental system, we demonstrate a field-driven active matter model capable of modulating individual motion behaviors through interaction with a recoverable environmental resource field by the resource perception and consumption.In the simulated model, by gradually reducing the individual resource-conversion coefficient over time, this robotic active matter can spontaneously decrease the overall level of motion, thereby actively achieving a regulation behavior like the cooling-down control. Through simulation calculations, we discover that the spatial structures of this robotic active matter convert from disorder to order during this process, with the resulting ordered structures exhibiting a high self-adaptability on the geometry of the environmental boundaries.展开更多
The purpose of this paper is to develop a general control method for swarm robot formation control. Firstly, an attraction-segment leader-follower formation graph is presented for formation representations. The model ...The purpose of this paper is to develop a general control method for swarm robot formation control. Firstly, an attraction-segment leader-follower formation graph is presented for formation representations. The model of swarm robot systems is described. According to the results and two kinds of artificial moments defined as leader-attraction moment and follower-attraction moment, a novel artificial moment method is proposed for swarm robot formation control. The principle of the method is introduced and the motion controller of robots is designed. Finally, the stability of the formation control system is proved. The simulations show that both the formation representation graph and the formation control method are valid and feasible.展开更多
For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory n...For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.展开更多
Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circu...Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circular arc spline interpolating method is proposed for the robot shape description,and a new two-stage position-selectable-updating particle swarm optimization(TPPSO)algorithm is put forward to solve this path planning problem.The algorithm decomposes the standard PSO velocity’s single-step updating formula into twostage multi-point updating,specifically adopting three points as candidates and selecting the best one as the updated position in the first half stage,and similarly taking seven points as candidates and selecting the best one as the final position in the last half stage.This scheme refines and widens each particle’s searching trajectory,increases the updating speed of the individual best,and improves the converging speed and precision.Aiming at the optimization objective to minimize the sum of all the motion displacements of every segmental points and all the axial stretching or contracting displacements of every segment,the TPPSO algorithm is used to solve the path planning problem.The detailed solution procedure is presented.Numerical examples of five path planning cases show that the proposed algorithm is simple,robust,and efficient.展开更多
As a sequel to our recent work [1], in which a control framework was developed for large-scale joint swarms of unmanned ground (UGV) and aerial (UAV) vehicles, the present paper proposes cognitive and meta-cognitive s...As a sequel to our recent work [1], in which a control framework was developed for large-scale joint swarms of unmanned ground (UGV) and aerial (UAV) vehicles, the present paper proposes cognitive and meta-cognitive supervisor models for this kind of distributed robotic system. The cognitive supervisor model is a formalization of the recently Nobel-awarded research in brain science on mammalian and human path integration and navigation, performed by the hippocampus. This is formalized here as an adaptive Hamiltonian path integral, and efficiently simulated for implementation on robotic vehicles as a pair of coupled nonlinear Schr?dinger equations. The meta-cognitive supervisor model is a modal logic of actions and plans that hinges on a weak causality relation that specifies when atoms may change their values without specifying that they must change. This relatively simple logic is decidable yet sufficiently expressive to support the level of inference needed in our application. The atoms and action primitives of the logic framework also provide a straight-forward way of connecting the meta-cognitive supervisor with the cognitive supervisor, with other modules, and to the meta-cognitive supervisors of other robotic platforms in the swarm.展开更多
How biologically active matters survive adaptively in complex and changeable environments is a common concern of scientists.Genetics,evolution and natural selection are vital factors in the process of biological evolu...How biologically active matters survive adaptively in complex and changeable environments is a common concern of scientists.Genetics,evolution and natural selection are vital factors in the process of biological evolution and are also the key to survival in harsh environments.However,it is challenging to intuitively and accurately reproduce such longterm adaptive survival processes in the laboratory.Although simulation experiments are intuitive and efficient,they lack fidelity.Therefore,we propose to use swarm robots to study the adaptive process of active matter swarms in complex and changeable environments.Based on a self-built virtual environmental platform and a robot swarm that can interact with the environment,we introduce the concept of genes into the robot system,giving each robot unique digital genes,and design robot breeding methods and rules for gene mutations.Our previous work[Proc.Natl.Acad.Sci.USA 119 e2120019119(2022)]has demonstrated the effectiveness of this system.In this work,by analyzing the relationship between the genetic traits of the population and the characteristics of environmental resources,and comparing different experimental conditions,we verified in both robot experiments and corresponding simulation experiments that agents with genetic inheritance can survive for a long time under the action of natural selection in periodically changing environments.We also confirmed that in the robot system,both breeding and mutation are essential factors.These findings can help answer the practical scientific question of how individuals and swarms can successfully adapt to complex,dynamic,and unpredictable actual environments.展开更多
The ability to localize moving objects within the environment is critical for autonomous robotic systems. This paper describes a moving object detection and localization system using multiple robots equipped with inex...The ability to localize moving objects within the environment is critical for autonomous robotic systems. This paper describes a moving object detection and localization system using multiple robots equipped with inexpensive optic flow sensors. We demonstrate an architecture capable of detecting motion along a plane by collecting three sets of one-dimensional optic flow data. The detected object is then localized with respect to each of the robots in the system.展开更多
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa...Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.展开更多
The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic set...The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic settings.To address these challenges,this paper introduces an adaptive swarm robot entrapment control model grounded in the transformation of gene regulatory networks(AT-GRN).This innovative model enables swarm robots to dynamically adjust entrap-ment strategies by assessing current environmental conditions via real-time sensory data.Further-more,an improved motion control model for swarm robots is designed to dynamically shape the for-mation generated by the AT-GRN.Through two sets of rigorous experimental environments,the proposed model significantly enhances the trapping performance of swarm robots in complex envi-ronments,demonstrating remarkable adaptability and stability.展开更多
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ...Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.展开更多
基金Sponsored by National Natural Science Foundation of China under Grant( 61170057,60875080)
文摘The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.
文摘Background This paper introduces a versatile edutainment platform based on a swarm robotics system that can support multiple interaction methods.We aim to create a re-usable open-ended tangible tool for a variety of educational and entertainment scenarios by utilizing the unique advantages of swarm robots such as flexible mobility,mutual perception,and free control of robot number.Methods Compared with the tangible user interface,the swarm user interface(SUI)possesses more flexible locomotion and more controllable widgets.However,research on SUI is still limited to system construction,and the upper interaction modes along with vivid applications have not been sufficiently studied.Results This study illustrates possible interaction modes for swarm robotics and feasible application scenarios based on these fundamental interaction modes.We also discuss the implementation of swarm robotics(including software and hardware),then design several simple experiments to verify the location accuracy of the swarm robotics system.
文摘A tumor is referred to as“intracranial hard neoplasm”if it grows near the brain or central spinal vessel(neoplasm).In certain cases,it is possible that the responsible cells are neurons situated deep inside the brain’s structure.This article discusses a strategy for halting the progression of brain tumor.A precise and accurate analytical model of brain tumors is the foundation of this strategy.It is based on an algorithm known as kill chain interior point(KCIP),which is the result of a merger of kill chain and interior point algorithms,as well as a precise and accurate analytical model of brain tumors.The inability to obtain a clear picture of tumor cell activity is the biggest challenge in this endeavor.Based on the motion of swarm robots,which are considered a subset of artificial intelligence,this article proposes a new notion of this kind of behavior,which may be used in various situations.The KCIP algorithm that follows is used in the analytical model to limit the development of certain cell types.According to the findings,it seems that different KCIP speed ratios are beneficial in preventing the development of brain tumors.It is hoped that this study will help researchers better understand the behavior of brain tumors,so as to develop a new drug that is effective in eliminating the tumor cells.
文摘This paper proposes a solution to controls warm robots in an effort to avoid obstacles, moving to the goal by the method of Null Space based Behavior (NSB) control of an individual in the swarm. This paper also provides the stability analysis of the converging process by investigating the relationship between single agents, and the analysis result is proved by using the Lyapunov theory. Finally, the simulation results in two-dimensional space have confirmed the obtained theoretical results.
基金supported by the Hunan Provincial Natural Science Foundation of China(No.2023JJ40686).
文摘Enhancing the adaptability of Unmanned Aerial Vehicle(UAV)swarm control models to cope with different complex working scenarios is an important issue in this research field.To achieve this goal,control model with tunable parameters is a widely adopted approach.In this article,an improved UAV swarm control model with tunable parameters namely Multi-Objective O-Flocking(MO O-Flocking)is proposed.The MO O-Flocking model is a combination of a multi rule control system and a virtual-physical-law based control model with tunable parameters.To achieve multi-objective parameter tuning,a multi-objective parameter tuning method namely Improved Strength Pareto Evolutionary Algorithm 2(ISPEA2)is designed.Simulation experiment scenarios include six target orientation scenarios with different kinds of objectives.Experimental results show that both the ISPEA2 algorithm and MO O-Flocking control model have good performance in their experiment scenarios.
基金supported by the DEFENCE SCIENCE&TECHNOLOGY GROUP(DSTG)(9729)The Commonwealth of Australia supported this research through a Defence Science Partnerships agreement with the Australian Defence Science and Technology Group。
文摘A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974066 and 12174041)the Seed Grants from the Wenzhou Institute, University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robotenvironment-interaction active matter system with the field-drive motion and the rules of resource search, resource consumption, and resource recovery. In an environmental compression–expansion cycle, the swarm emerges a series of boundary-dependent phase transitions, and the whole evolution process is time-reversal symmetry-breaking;we call this phenomenon “orderly hysteresis”. We present the influence of the environmental recovery rate on the dynamic collective behavior of the swarm.
基金Project supported by the National Natural Science Foundation of China(Grant No.12174041)China Postdoctoral Science Foundation(Grant No.2022M723118)the Seed Grants from the Wenzhou Institute,University of Chinese Academy of Sciences(Grant No.WIUCASQD2021002)。
文摘In classical matter systems, typical phase-transition phenomena usually stem from changes in state variables, such as temperature and pressure, induced by external regulations such as heat transfer and volume adjustment. However, in active matter systems, the self-propulsion nature of active particles endows the systems with the ability to induce unique collectivestate transitions by spontaneously regulating individual properties to alter the overall states. Based on an innovative robot-swarm experimental system, we demonstrate a field-driven active matter model capable of modulating individual motion behaviors through interaction with a recoverable environmental resource field by the resource perception and consumption.In the simulated model, by gradually reducing the individual resource-conversion coefficient over time, this robotic active matter can spontaneously decrease the overall level of motion, thereby actively achieving a regulation behavior like the cooling-down control. Through simulation calculations, we discover that the spatial structures of this robotic active matter convert from disorder to order during this process, with the resulting ordered structures exhibiting a high self-adaptability on the geometry of the environmental boundaries.
基金the National Natural Science Foundation of China (Grant No.60574010)Programs for Liaoning Excellent Talents (Grant No.2006R31)+1 种基金for Liaoning Innovation Group In University (Grant No.2007T082)State Key Laboratory of Robotics and System (HIT)
文摘The purpose of this paper is to develop a general control method for swarm robot formation control. Firstly, an attraction-segment leader-follower formation graph is presented for formation representations. The model of swarm robot systems is described. According to the results and two kinds of artificial moments defined as leader-attraction moment and follower-attraction moment, a novel artificial moment method is proposed for swarm robot formation control. The principle of the method is introduced and the motion controller of robots is designed. Finally, the stability of the formation control system is proved. The simulations show that both the formation representation graph and the formation control method are valid and feasible.
基金supported in part by National Key R&D Program of China(Grant Nos.2021ZD0111501,2021ZD0111502)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province+8 种基金the Key Laboratory of Intelligent Manufacturing Technology(Shantou University)Ministry of Education,the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917144960530)the Project of Educational Commission of Guangdong Province of China(Grant No.2017KZDXM032)the State Key Lab of Digital Manufacturing Equipment&Technology(grant number DMETKF2019020)National Natural Science Foundation of China(Grant Nos.62176147,62002369)STU Scientific Research Foundation for Talents(Grant No.NTF21001)Science and Technology Planning Project of Guangdong Province of China(Grant Nos.2019A050520001,2021A0505030072,2022A1515110660)Science and Technology Special Funds Project of Guangdong Province of China(Grant Nos.STKJ2021176,STKJ2021019)Guangdong Special Support Program for Outstanding Talents(Grant No.2021JC06X549)。
文摘For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.DL09CB02)the Heilongjiang Province Natural Science Fund(Grant No.E201013)
文摘Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circular arc spline interpolating method is proposed for the robot shape description,and a new two-stage position-selectable-updating particle swarm optimization(TPPSO)algorithm is put forward to solve this path planning problem.The algorithm decomposes the standard PSO velocity’s single-step updating formula into twostage multi-point updating,specifically adopting three points as candidates and selecting the best one as the updated position in the first half stage,and similarly taking seven points as candidates and selecting the best one as the final position in the last half stage.This scheme refines and widens each particle’s searching trajectory,increases the updating speed of the individual best,and improves the converging speed and precision.Aiming at the optimization objective to minimize the sum of all the motion displacements of every segmental points and all the axial stretching or contracting displacements of every segment,the TPPSO algorithm is used to solve the path planning problem.The detailed solution procedure is presented.Numerical examples of five path planning cases show that the proposed algorithm is simple,robust,and efficient.
文摘As a sequel to our recent work [1], in which a control framework was developed for large-scale joint swarms of unmanned ground (UGV) and aerial (UAV) vehicles, the present paper proposes cognitive and meta-cognitive supervisor models for this kind of distributed robotic system. The cognitive supervisor model is a formalization of the recently Nobel-awarded research in brain science on mammalian and human path integration and navigation, performed by the hippocampus. This is formalized here as an adaptive Hamiltonian path integral, and efficiently simulated for implementation on robotic vehicles as a pair of coupled nonlinear Schr?dinger equations. The meta-cognitive supervisor model is a modal logic of actions and plans that hinges on a weak causality relation that specifies when atoms may change their values without specifying that they must change. This relatively simple logic is decidable yet sufficiently expressive to support the level of inference needed in our application. The atoms and action primitives of the logic framework also provide a straight-forward way of connecting the meta-cognitive supervisor with the cognitive supervisor, with other modules, and to the meta-cognitive supervisors of other robotic platforms in the swarm.
基金Project supported by the National Natural Science Foundation of China(Grant No.12174041)China Postdoctoral Science Foundation(Grant No.2022M723118)+1 种基金the seed grants from the Wenzhou InstituteUniversity of Chinese Academy of Sciences(Grant No.WIUCASQD2021002)。
文摘How biologically active matters survive adaptively in complex and changeable environments is a common concern of scientists.Genetics,evolution and natural selection are vital factors in the process of biological evolution and are also the key to survival in harsh environments.However,it is challenging to intuitively and accurately reproduce such longterm adaptive survival processes in the laboratory.Although simulation experiments are intuitive and efficient,they lack fidelity.Therefore,we propose to use swarm robots to study the adaptive process of active matter swarms in complex and changeable environments.Based on a self-built virtual environmental platform and a robot swarm that can interact with the environment,we introduce the concept of genes into the robot system,giving each robot unique digital genes,and design robot breeding methods and rules for gene mutations.Our previous work[Proc.Natl.Acad.Sci.USA 119 e2120019119(2022)]has demonstrated the effectiveness of this system.In this work,by analyzing the relationship between the genetic traits of the population and the characteristics of environmental resources,and comparing different experimental conditions,we verified in both robot experiments and corresponding simulation experiments that agents with genetic inheritance can survive for a long time under the action of natural selection in periodically changing environments.We also confirmed that in the robot system,both breeding and mutation are essential factors.These findings can help answer the practical scientific question of how individuals and swarms can successfully adapt to complex,dynamic,and unpredictable actual environments.
文摘The ability to localize moving objects within the environment is critical for autonomous robotic systems. This paper describes a moving object detection and localization system using multiple robots equipped with inexpensive optic flow sensors. We demonstrate an architecture capable of detecting motion along a plane by collecting three sets of one-dimensional optic flow data. The detected object is then localized with respect to each of the robots in the system.
基金Project supported by the National Natural Science Foundation of China(Nos.91648101 and11672233)the Northwestern Polytechnical University(NPU)Foundation for Fundamental Research(No.3102017AX008)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S201710699033)
文摘Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.
基金supported in part by the National Science and Technol-ogy Major Project(No.2021ZD0111502)the National Nat-ural Science Foundation of China(Nos.62176147,62476163)+2 种基金the Science and Technology Planning Project of Guangdong Province of China(Nos.2022A1515110660,2021JC06X549)the STU Scientific Research Foundation for Talents(No.NTF21001)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120020)。
文摘The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic settings.To address these challenges,this paper introduces an adaptive swarm robot entrapment control model grounded in the transformation of gene regulatory networks(AT-GRN).This innovative model enables swarm robots to dynamically adjust entrap-ment strategies by assessing current environmental conditions via real-time sensory data.Further-more,an improved motion control model for swarm robots is designed to dynamically shape the for-mation generated by the AT-GRN.Through two sets of rigorous experimental environments,the proposed model significantly enhances the trapping performance of swarm robots in complex envi-ronments,demonstrating remarkable adaptability and stability.
文摘Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.