期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的粒子群优化神经网络算法的海平面变化预测分析
被引量:
2
1
作者
张宇
贺小星
孙喜文
《北京测绘》
2023年第1期131-136,共6页
针对验潮站潮位预报的需求,提出一种基于分群策略的粒子群优化神经网络(SSPSO-BP)的预报方法。该方法通过建立多个不同功能且具有交流能力的智能粒子群,经SSPSO和BP的两次优化,构建潮高预报模型。实验研究表明,SSPSO-BP模型在Oga站的潮...
针对验潮站潮位预报的需求,提出一种基于分群策略的粒子群优化神经网络(SSPSO-BP)的预报方法。该方法通过建立多个不同功能且具有交流能力的智能粒子群,经SSPSO和BP的两次优化,构建潮高预报模型。实验研究表明,SSPSO-BP模型在Oga站的潮位资料上高、低潮位间的时刻基本保持一致,高潮时刻最大潮高差为7.37 cm,低潮时刻最大潮高差为4.21 cm,该模型比标准BP神经网络及PSO优化神经网络在准确度和精度上有了很大的提高,其平均绝对误差、均方误差相较于BP神经网络分别提升了16.2%、79.2%,相较于PSO-BP神经网络提升了13.9%、79.6%。
展开更多
关键词
BP神经网络
分群策略
变异算子
sspso-bp
模型
潮高预测
下载PDF
职称材料
题名
基于改进的粒子群优化神经网络算法的海平面变化预测分析
被引量:
2
1
作者
张宇
贺小星
孙喜文
机构
江西理工大学土木与测绘工程学院
东华理工大学测绘工程学院
出处
《北京测绘》
2023年第1期131-136,共6页
基金
国家自然科学基金(42104023,41904002)
江西理工大学高层次人才科研启动项目(205200100564,205200100588)
江西理工大学大学生创新创业训练资助项目(202210407032)。
文摘
针对验潮站潮位预报的需求,提出一种基于分群策略的粒子群优化神经网络(SSPSO-BP)的预报方法。该方法通过建立多个不同功能且具有交流能力的智能粒子群,经SSPSO和BP的两次优化,构建潮高预报模型。实验研究表明,SSPSO-BP模型在Oga站的潮位资料上高、低潮位间的时刻基本保持一致,高潮时刻最大潮高差为7.37 cm,低潮时刻最大潮高差为4.21 cm,该模型比标准BP神经网络及PSO优化神经网络在准确度和精度上有了很大的提高,其平均绝对误差、均方误差相较于BP神经网络分别提升了16.2%、79.2%,相较于PSO-BP神经网络提升了13.9%、79.6%。
关键词
BP神经网络
分群策略
变异算子
sspso-bp
模型
潮高预测
Keywords
back
propagation
(BP)neural network
Clustering
strategy
mutation operator
swarm
strategy
particle
swarm
optimization-back
propagation
(
sspso-bp
)
model
tide height prediction
分类号
P258 [天文地球—测绘科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的粒子群优化神经网络算法的海平面变化预测分析
张宇
贺小星
孙喜文
《北京测绘》
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部