The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However,...The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However, no safe and effective methods have been found to protect sweet potato from this pest. Herbivore-induced plant volatiles(HIPVs)promote various defensive bioactivities, but their formation and the defense mechanisms in sweet potato have not been investigated. To identify the defensive HIPVs in sweet potato, the release dynamics of volatiles was monitored.The biosynthetic pathways and regulatory factors of the candidate HIPVs were revealed via stable isotope tracing and analyses at the transcriptional and metabolic levels. Finally, the anti-insect activities and the defense mechanisms of the gaseous candidates were evaluated. The production of(Z)-3-hexenyl acetate(z3HAC) and allo-ocimene was induced by sweet potato weevil feeding, with a distinct circadian rhythm. Ipomoea batatas ocimene synthase(IbOS) is first reported here as a key gene in allo-ocimene synthesis. Insect-induced wounding promoted the production of the substrate,(Z)-3-hexenol, and upregulated the expression of IbOS, which resulted in higher contents of z3HAC and allo-ocimene,respectively. Gaseous z3HAC and allo-ocimene primed nearby plants to defend themselves against sweet potato weevils. These results provide important data regarding the formation, regulation, and signal transduction mechanisms of defensive volatiles in sweet potato, with potential implications for improving sweet potato weevil management strategies.展开更多
This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian croppi...This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.展开更多
[Objective] This study aimed to investigate the contents of nutriUonal ingredients and reutilization way of sweet potato starch residue. [Method] The starch residue of Shangshu 19 from four different processing sites ...[Objective] This study aimed to investigate the contents of nutriUonal ingredients and reutilization way of sweet potato starch residue. [Method] The starch residue of Shangshu 19 from four different processing sites was used as the test material, and the contents of main nutritional ingredients and moisture in the sweet potato starch residue were determined. [Result] In the sweet potato starch residue (calculated by fresh weight), the average contents of moisture, starch, fat, protein, Zn, Fe, Se and Ca were 83.75%, 101.15 g/kg, 0255%, 0.497 3%, 11.18 mg/g, 1 219.00 mg/kg, 0.032 3 mg/kg and 6 460.00 mg/kg, respectively, but Vc, VA and chlorogenic acid were not detected. According to the characteristics of high starch content and abundant nutritional ingredients, the sweet potato starch residue can be used for producing edible alcohol and dietary fiber health food. [Coaclusio,] This study will provide certain reference for fully development and utilization of sweet potato starch residue.展开更多
In this study, the proximate composition, mineral content and amino acid composition of starch processing residues from 10 cultivars of sweet potato and 10 cultivars of potato were determined, and the nutritional and ...In this study, the proximate composition, mineral content and amino acid composition of starch processing residues from 10 cultivars of sweet potato and 10 cultivars of potato were determined, and the nutritional and health-related values of these residues were investigated. The residual flours contained 20.63-31.48 g and 17.14-28.57 g rich dietary fiber per 100 g dry weight for sweet potato and potato, respectively, as well as mineral elements, including potassium, ferrum, zinc and copper. The highest limiting amino acid score (AAS) of the almost balanced amino acid composition were observed to be 71.07 and 57.96 for sweet potato and potato residues, respectively. A grey relational analysis showed that the nutritional values of Jishu 4 at 0.7519 and LT-5 at 0.7281 were the highest among the sweet potato and potato residues, respectively. The evaluation of the sweet potato/potato residues, the by-products of the starch industry, based on recommended daily intake (RDI) standards, indicated that the residues have potential nutritional and health-related food values.展开更多
基金supported by the National Natural Science Foundation of China–Guangdong Natural Science Foundation Joint Project (U1701234)。
文摘The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However, no safe and effective methods have been found to protect sweet potato from this pest. Herbivore-induced plant volatiles(HIPVs)promote various defensive bioactivities, but their formation and the defense mechanisms in sweet potato have not been investigated. To identify the defensive HIPVs in sweet potato, the release dynamics of volatiles was monitored.The biosynthetic pathways and regulatory factors of the candidate HIPVs were revealed via stable isotope tracing and analyses at the transcriptional and metabolic levels. Finally, the anti-insect activities and the defense mechanisms of the gaseous candidates were evaluated. The production of(Z)-3-hexenyl acetate(z3HAC) and allo-ocimene was induced by sweet potato weevil feeding, with a distinct circadian rhythm. Ipomoea batatas ocimene synthase(IbOS) is first reported here as a key gene in allo-ocimene synthesis. Insect-induced wounding promoted the production of the substrate,(Z)-3-hexenol, and upregulated the expression of IbOS, which resulted in higher contents of z3HAC and allo-ocimene,respectively. Gaseous z3HAC and allo-ocimene primed nearby plants to defend themselves against sweet potato weevils. These results provide important data regarding the formation, regulation, and signal transduction mechanisms of defensive volatiles in sweet potato, with potential implications for improving sweet potato weevil management strategies.
文摘This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.
文摘[Objective] This study aimed to investigate the contents of nutriUonal ingredients and reutilization way of sweet potato starch residue. [Method] The starch residue of Shangshu 19 from four different processing sites was used as the test material, and the contents of main nutritional ingredients and moisture in the sweet potato starch residue were determined. [Result] In the sweet potato starch residue (calculated by fresh weight), the average contents of moisture, starch, fat, protein, Zn, Fe, Se and Ca were 83.75%, 101.15 g/kg, 0255%, 0.497 3%, 11.18 mg/g, 1 219.00 mg/kg, 0.032 3 mg/kg and 6 460.00 mg/kg, respectively, but Vc, VA and chlorogenic acid were not detected. According to the characteristics of high starch content and abundant nutritional ingredients, the sweet potato starch residue can be used for producing edible alcohol and dietary fiber health food. [Coaclusio,] This study will provide certain reference for fully development and utilization of sweet potato starch residue.
基金supported by the National Key Research and Development Program of China(2017YFD0400401)the Public Welfare Industry(Agriculture) Research Project,China(201503001-2)the earmarked foud for the China Agriculture Research System(CARS-10-B21)
文摘In this study, the proximate composition, mineral content and amino acid composition of starch processing residues from 10 cultivars of sweet potato and 10 cultivars of potato were determined, and the nutritional and health-related values of these residues were investigated. The residual flours contained 20.63-31.48 g and 17.14-28.57 g rich dietary fiber per 100 g dry weight for sweet potato and potato, respectively, as well as mineral elements, including potassium, ferrum, zinc and copper. The highest limiting amino acid score (AAS) of the almost balanced amino acid composition were observed to be 71.07 and 57.96 for sweet potato and potato residues, respectively. A grey relational analysis showed that the nutritional values of Jishu 4 at 0.7519 and LT-5 at 0.7281 were the highest among the sweet potato and potato residues, respectively. The evaluation of the sweet potato/potato residues, the by-products of the starch industry, based on recommended daily intake (RDI) standards, indicated that the residues have potential nutritional and health-related food values.