Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expa...Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.展开更多
This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experime...This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experimental program consisted of consistency limits,sediment volume,compaction and oedometer cyclic swell-shrink tests,performed using distilled water and four different PAM-to-water solutions of P_(D)=0.1 g/L,0.2 g/L,0.4 g/L and 0.6 g/L as the mixing liquids.Overall,the relative swelling and shrinkage strains were found to decrease with increasing number of applied swell-shrink cycles,with an‘elastic equilibrium’condition achieved on the conclusion of four cycles.The propensity for swelling/shrinkage potential reduction(for any given cycle)was found to be in favor of increasing the PAM dosage up to P_(D)=0.2 g/L,beyond which the excess PAM molecules self-associate as aggregates,thereby functioning as a lubricant instead of a flocculant;this critical dosage was termed‘maximum flocculation dosage’(MFD).The MFD assertion was discussed and validated using the consistency limits and sediment volume properties,both exhibiting only marginal variations beyond the identified MFD of P_(D)=0.2 g/L.The accumulated axial strain progressively transitioned from‘expansive’for the unamended soil to an ideal‘neutral’state at the MFD,while higher dosages demonstrated undesirable‘contractive’states.展开更多
基金Project(2006BAB04A10) supported by the National Science and Technology Pillar Program during the 11th Five Year Plan of ChinaProject(51008117) supported by the National Natural Science Foundation of China
文摘Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.
基金funded by the Australian Research Council(ARC),Project No.DP140103004。
文摘This laboratory study examines the potential use of an anionic polyacrylamide(PAM)-based material as an environmentally sustainable additive for the stabilization of an expansive soil from South Australia.The experimental program consisted of consistency limits,sediment volume,compaction and oedometer cyclic swell-shrink tests,performed using distilled water and four different PAM-to-water solutions of P_(D)=0.1 g/L,0.2 g/L,0.4 g/L and 0.6 g/L as the mixing liquids.Overall,the relative swelling and shrinkage strains were found to decrease with increasing number of applied swell-shrink cycles,with an‘elastic equilibrium’condition achieved on the conclusion of four cycles.The propensity for swelling/shrinkage potential reduction(for any given cycle)was found to be in favor of increasing the PAM dosage up to P_(D)=0.2 g/L,beyond which the excess PAM molecules self-associate as aggregates,thereby functioning as a lubricant instead of a flocculant;this critical dosage was termed‘maximum flocculation dosage’(MFD).The MFD assertion was discussed and validated using the consistency limits and sediment volume properties,both exhibiting only marginal variations beyond the identified MFD of P_(D)=0.2 g/L.The accumulated axial strain progressively transitioned from‘expansive’for the unamended soil to an ideal‘neutral’state at the MFD,while higher dosages demonstrated undesirable‘contractive’states.