A non-dispersive extraction technique, using an emulsion liquid membrane within a hollow-fiber-contactor for the extraction and enrichment of Nd^3+ from the dilute feed aqueous, was applied. The emulsion system is co...A non-dispersive extraction technique, using an emulsion liquid membrane within a hollow-fiber-contactor for the extraction and enrichment of Nd^3+ from the dilute feed aqueous, was applied. The emulsion system is consisted of span80 [ sorbitian monooleate], paraffin oil, D2EHPA [ 2-( 2-ethylhexyl- phosphonic acid)], kerosene as well as HCl solution. The extraction under various conditions such as the span80 concentrations, the flow rate of aqueous, the extraction time and HCl concentrations in receiving phase were studied. Results show that the lower the flow rates of aqueous are, the higher the extraction percentage and enrichment-fold are, and the extraction percentage increases with the increasing of HCl concentrations. When the initial Nd^3+ concentration in feed is maintained at 1000 mg· L^-1 and the emulsion is recycled with 70 times by a counter-flow,展开更多
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet...Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.展开更多
The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of ...The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained.展开更多
A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity...A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity distribution were constructed to investigate the influences of flow type,Reynolds number,and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module.The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient,Nusselt number(Nu),and Sherwood number(Sh).Results demonstrate that a distillation efficiency enhancement of 29%compared to the straight HFMTB has been detected for four-helical HFMTB configuration,though the friction coefficient of such a module is about 4 times of their straight counterparts.The values of average Nu and Sh numbers are increasing with tube number,which improves distillation efficiency.The effect of flow type has been studied by employing the upstream and downstream flows to the double-helical HFMTB,demonstrating upstream flow type is more conducive to the heat-mass transfer process.Both the outlet air humidity(ω)and distillation efficiency(η)decrease with the air-side Reynolds number(Rea)and inlet air temperature in the helical HFMTB while increasing with the solution-side Reynolds number(Re_(S))and inlet solution temperature.Overall,the obtained results indicate that helical HFMTB applying upstream flow has great potential to achieve high-performance SGMD for seawater desalination.It is anticipated that the present work can assist in a better understanding of the membrane desalination process in HFMTB and thus provide theoretical suggestions for further optimization and development.展开更多
In this paper the mass transfer behaviors of Fe(Ⅲ), Co(Ⅱ) and Ni(Ⅱ) with Cyanex302(bis(2,4,4- trimethylpentyl)monothiophosphinic acid) from sulfate medium by using hollow fiber membrane in counter-currently circula...In this paper the mass transfer behaviors of Fe(Ⅲ), Co(Ⅱ) and Ni(Ⅱ) with Cyanex302(bis(2,4,4- trimethylpentyl)monothiophosphinic acid) from sulfate medium by using hollow fiber membrane in counter-currently circulating operation were studied. The effect of acidity in aqueous solution and the extractant concentration on the mass transfer coefficient (Kw) was discussed. The reaction mechanism of membrane extraction was considered as a false one series reaCtion and the rate controlling step was membrane resistance. When the value of Kw arrived at 1.0 × 10-6 m/s, △pH:CoFe equaled tO 6.225, and △pH:NiFe was bigger than △p HCoFe.展开更多
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ...Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.展开更多
Hollow fiber renewal liquid membrane(HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2 EHPA in kerosene + HCl was used. Aqueous layer di...Hollow fiber renewal liquid membrane(HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2 EHPA in kerosene + HCl was used. Aqueous layer diffusion in the feed phase is the rate-control step, and the influence of lumen side flow rate on the mass transfer is more significant than that on the shell side. The resistance of overall mass transfer is greatly reduced because of the mass transfer intensification in the renewal of liquid membrane on the lumen side. The driving force of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfer coefficient increases with the increase of p H in the feed solution, HCl concentration and D2 EHPA concentration, and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLM based on the surface renewal theory. The calculated results agree well with experimental results. The HFRLM process is a promising method for aniline wastewater treatment.展开更多
Extracorporeal membrane oxygenator(ECMO) has been in development for nearly 70 years, and the oxygenator has gone through several generations of optimizations, with advances from bubble oxygenators to membrane oxygena...Extracorporeal membrane oxygenator(ECMO) has been in development for nearly 70 years, and the oxygenator has gone through several generations of optimizations, with advances from bubble oxygenators to membrane oxygenators leading to more and more widespread use of ECMO. Membrane is the core of a ECMO system and the working mechanism of membrane oxygenator depends on the membrane material,from PDMS flat membrane to PMP hollow fiber membrane, which have experienced three generations.Blood compatibility on the surface of the membrane material is very vital, which directly determines the use duration of the oxygenator and can reduce the occurrence of complications. The mechanism of mass transfer is the basis of oxygenator operation and optimization. This review summarizes the membrane development history and preparation technology, modification approaches and mass transfer theory in the process of oxygen and blood exchange. We hoped that this review will provide more ideas for the study of gas blood exchange membrane.展开更多
Extraction and interfacial kinetics of Nd 3+ and Sm 3+ with HEH/EHP kerosene in a hollow fiber membrane extractor were studied. The results show that the extraction reactions in the hollow fiber membrane e...Extraction and interfacial kinetics of Nd 3+ and Sm 3+ with HEH/EHP kerosene in a hollow fiber membrane extractor were studied. The results show that the extraction reactions in the hollow fiber membrane extractor are the same as those in the liquid liquid extraction, which can be expressed as a quasi first order reaction. The effect of acidity in aqueous phase, concentrations of extractant, Nd 3+ and Sm 3+ on extraction rate were discussed and the corresponding reaction series were obtained. The reaction equations, reaction rate constants and the separation constant were obtained.展开更多
文摘A non-dispersive extraction technique, using an emulsion liquid membrane within a hollow-fiber-contactor for the extraction and enrichment of Nd^3+ from the dilute feed aqueous, was applied. The emulsion system is consisted of span80 [ sorbitian monooleate], paraffin oil, D2EHPA [ 2-( 2-ethylhexyl- phosphonic acid)], kerosene as well as HCl solution. The extraction under various conditions such as the span80 concentrations, the flow rate of aqueous, the extraction time and HCl concentrations in receiving phase were studied. Results show that the lower the flow rates of aqueous are, the higher the extraction percentage and enrichment-fold are, and the extraction percentage increases with the increasing of HCl concentrations. When the initial Nd^3+ concentration in feed is maintained at 1000 mg· L^-1 and the emulsion is recycled with 70 times by a counter-flow,
基金Supported by the Hi-Tech. Research and Development Program of China (863) (2002AA649280, 2002AA304030), National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Postdoctrate Research Foundation of Chin
文摘Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
文摘The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained.
基金This work was supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0108)Science and Technology Planning Project of Guangdong Province,China(2017A050501046)+1 种基金Natural Science Foundation of Guangdong Province(2017A030310185)Science and Technology Program of Guangzhou,China(202102021199).
文摘A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity distribution were constructed to investigate the influences of flow type,Reynolds number,and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module.The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient,Nusselt number(Nu),and Sherwood number(Sh).Results demonstrate that a distillation efficiency enhancement of 29%compared to the straight HFMTB has been detected for four-helical HFMTB configuration,though the friction coefficient of such a module is about 4 times of their straight counterparts.The values of average Nu and Sh numbers are increasing with tube number,which improves distillation efficiency.The effect of flow type has been studied by employing the upstream and downstream flows to the double-helical HFMTB,demonstrating upstream flow type is more conducive to the heat-mass transfer process.Both the outlet air humidity(ω)and distillation efficiency(η)decrease with the air-side Reynolds number(Rea)and inlet air temperature in the helical HFMTB while increasing with the solution-side Reynolds number(Re_(S))and inlet solution temperature.Overall,the obtained results indicate that helical HFMTB applying upstream flow has great potential to achieve high-performance SGMD for seawater desalination.It is anticipated that the present work can assist in a better understanding of the membrane desalination process in HFMTB and thus provide theoretical suggestions for further optimization and development.
基金Supported by the National Natural Science Foundahon of China(No. 29771028, No. 29801004) and State Key Project of Fundamental
文摘In this paper the mass transfer behaviors of Fe(Ⅲ), Co(Ⅱ) and Ni(Ⅱ) with Cyanex302(bis(2,4,4- trimethylpentyl)monothiophosphinic acid) from sulfate medium by using hollow fiber membrane in counter-currently circulating operation were studied. The effect of acidity in aqueous solution and the extractant concentration on the mass transfer coefficient (Kw) was discussed. The reaction mechanism of membrane extraction was considered as a false one series reaCtion and the rate controlling step was membrane resistance. When the value of Kw arrived at 1.0 × 10-6 m/s, △pH:CoFe equaled tO 6.225, and △pH:NiFe was bigger than △p HCoFe.
文摘Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.
基金Supported by the Program for New Century Excellent Talents in University(NCET-100210)the National Natural Science Foundation of China(21076011 and 21276012)
文摘Hollow fiber renewal liquid membrane(HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2 EHPA in kerosene + HCl was used. Aqueous layer diffusion in the feed phase is the rate-control step, and the influence of lumen side flow rate on the mass transfer is more significant than that on the shell side. The resistance of overall mass transfer is greatly reduced because of the mass transfer intensification in the renewal of liquid membrane on the lumen side. The driving force of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfer coefficient increases with the increase of p H in the feed solution, HCl concentration and D2 EHPA concentration, and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLM based on the surface renewal theory. The calculated results agree well with experimental results. The HFRLM process is a promising method for aniline wastewater treatment.
基金financial support of the National Key Research and Development Program of China (2020YFC0862903)the National Natural Science Foundation of China (22078146)+1 种基金the Key Research and Development program of Jiangsu Province (BE2021022)the Natural Science Foundation of Jiangsu Province (BK20200091)。
文摘Extracorporeal membrane oxygenator(ECMO) has been in development for nearly 70 years, and the oxygenator has gone through several generations of optimizations, with advances from bubble oxygenators to membrane oxygenators leading to more and more widespread use of ECMO. Membrane is the core of a ECMO system and the working mechanism of membrane oxygenator depends on the membrane material,from PDMS flat membrane to PMP hollow fiber membrane, which have experienced three generations.Blood compatibility on the surface of the membrane material is very vital, which directly determines the use duration of the oxygenator and can reduce the occurrence of complications. The mechanism of mass transfer is the basis of oxygenator operation and optimization. This review summarizes the membrane development history and preparation technology, modification approaches and mass transfer theory in the process of oxygen and blood exchange. We hoped that this review will provide more ideas for the study of gas blood exchange membrane.
文摘Extraction and interfacial kinetics of Nd 3+ and Sm 3+ with HEH/EHP kerosene in a hollow fiber membrane extractor were studied. The results show that the extraction reactions in the hollow fiber membrane extractor are the same as those in the liquid liquid extraction, which can be expressed as a quasi first order reaction. The effect of acidity in aqueous phase, concentrations of extractant, Nd 3+ and Sm 3+ on extraction rate were discussed and the corresponding reaction series were obtained. The reaction equations, reaction rate constants and the separation constant were obtained.