In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is considered. The linearly moving cart,driven by a travel mechanism,is modelled as a discrete six deg...In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is considered. The linearly moving cart,driven by a travel mechanism,is modelled as a discrete six degrees of freedom (DOF) dynamic system. The hoisting mechanism for lowering and lifting the payload is considered and is included in the dynamic model as one DOF system. Differential equations of motion of the cart elements are derived using Lagrangian dynamics and are solved for a set of real-life constant parameters of the cart. A two-sided interaction was observed between the swinging payload and the travel mechanism. Results for kinematical and force parameters of the system are obtained. A verification of the proposed model was conducted.展开更多
The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmod...The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.展开更多
The existing research of the automotive side swing door and the closing angle via tests and simulations. In these tests, the closing energy is mainly conducted by measuring the closing energy door closing velocity and...The existing research of the automotive side swing door and the closing angle via tests and simulations. In these tests, the closing energy is mainly conducted by measuring the closing energy door closing velocity and initial door closing angle are usually not taken into consideration, so the accuracy of the test data cannot be ensured, and, meanwhile, simulations require a great deal of manpower and time. Moreover, frequent tests would give rise to the increasing research and development costs. In this paper, in response to the deficiencies of these current methods, the complicated door closing process is decomposed into the closing processes of different subsystems of door, which includes weather strip seal', air-binding effect, door weight, hinge, check-link and latch. Mathematical models of those subsystems are established according to their working principles during the door closing process. In addition to the theoretical research, an Excel-based software using Visual Basic Application programming language is developed to realize the mathematical models, which aims to calculate the energy consumption of the subsystems. The energy consumption of different subsystems of a production vehicle door is measured to verify the accuracy of the calculation sottware developed. The proposed research provides not only the theoretical basis for the future door closing energy research, but also an interactive method and system, effectively improving the quality and efficiency of vehicle door design.展开更多
文摘In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is considered. The linearly moving cart,driven by a travel mechanism,is modelled as a discrete six degrees of freedom (DOF) dynamic system. The hoisting mechanism for lowering and lifting the payload is considered and is included in the dynamic model as one DOF system. Differential equations of motion of the cart elements are derived using Lagrangian dynamics and are solved for a set of real-life constant parameters of the cart. A two-sided interaction was observed between the swinging payload and the travel mechanism. Results for kinematical and force parameters of the system are obtained. A verification of the proposed model was conducted.
基金Supported by the National Natural Science Foundation of China (No. 29876011).
文摘The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.
基金supported by Shanghai Automotive Industry Development Foundation of China (Grant No. 0903)R&D Project of Science and Technology Commission of Shanghai Municipality of China (Grant No. 08DZ1150306)
文摘The existing research of the automotive side swing door and the closing angle via tests and simulations. In these tests, the closing energy is mainly conducted by measuring the closing energy door closing velocity and initial door closing angle are usually not taken into consideration, so the accuracy of the test data cannot be ensured, and, meanwhile, simulations require a great deal of manpower and time. Moreover, frequent tests would give rise to the increasing research and development costs. In this paper, in response to the deficiencies of these current methods, the complicated door closing process is decomposed into the closing processes of different subsystems of door, which includes weather strip seal', air-binding effect, door weight, hinge, check-link and latch. Mathematical models of those subsystems are established according to their working principles during the door closing process. In addition to the theoretical research, an Excel-based software using Visual Basic Application programming language is developed to realize the mathematical models, which aims to calculate the energy consumption of the subsystems. The energy consumption of different subsystems of a production vehicle door is measured to verify the accuracy of the calculation sottware developed. The proposed research provides not only the theoretical basis for the future door closing energy research, but also an interactive method and system, effectively improving the quality and efficiency of vehicle door design.