Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subg...Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus...Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.展开更多
Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mi...Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important展开更多
Particle image velocimetry (PIV), thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios. Eulerian-Lagrangian large-eddy sim-ulation (LE...Particle image velocimetry (PIV), thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios. Eulerian-Lagrangian large-eddy sim-ulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models, particle devolatilization and particle combustion models, are simultaneously used to simulate swirling coal combustion. Statistical LES results are validated by measurement results. Instantaneous LES results show that the coherent structures for swirling coal com- bustion are stronger than those for swirling gas combustion. Particles are shown to concentrate along the periphery of the coherent structures. Combustion flame is located in the high vorticity and high par-ticle concentration zones. Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.展开更多
Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperatu...Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.展开更多
The development of integrated gasification combined cycle (IGCC) systems provides cost-effective and environmentally sound options for meeting the future coal-utilizing power generation needs in the worht. The combu...The development of integrated gasification combined cycle (IGCC) systems provides cost-effective and environmentally sound options for meeting the future coal-utilizing power generation needs in the worht. The combustion of gasified coal fuel significantly influences overall performance of IGCC power generation. Experi- ments are performed to investigate the characteristics of syngas swirling flame using the particle image velocimetry (PIV) in this paper. With the increase of CO/H2 molar ratio, the distance between the nozzle and the fuel vortex in flame increases at first, and then reduces slowly; maximum of the axial mean velocity increases continuously, but the axial mean velocity peaks on the side of centerline change little. The experiment indicates that with the increase of fuel to air velocity ratio, the fuel vortex grows up at first, and then becomes thinner; the distance from the fuel vortex to the nozzle reduces at first, and then increases; inner boundary of the recirculating zone increases. Furthermore, difference between the methane swirling flow field and the syngas swirling one is analyzed in this paper. It can establish the benchmarks for the development and validation of combustion numerical simulation by the data from this experiment.展开更多
This paper presents the experimental and numerical results for a two stagecombustor capable of achieving flameless combustion with liquid fuels for different thermalheat inputs of 20,30,40 and 60 kW and heat release d...This paper presents the experimental and numerical results for a two stagecombustor capable of achieving flameless combustion with liquid fuels for different thermalheat inputs of 20,30,40 and 60 kW and heat release density of 5-15 MW/m^(3).Combustioncharacteristics and pollutant emissions are studied for three different fuels,kerosene,diesel andgasoline.The influence of droplet diameter on pollutant emissions at all conditions is studied.The fuel and oxidizer are supplied at ambient conditions.The concept of high swirl flows hasbeen adopted to achieve high intemal recirculation rates,residence time and increased dilutionof the fresh reactants in the primary combustion zone,resulting in flameless combustion mode.Air is injected through four tangential injection ports located near the bottom of the combustorand liquid fuel is injected through a centrally mounted pressure swirl injector.Computationalanalysis of the flow features shows that decrease in the exit port diameter of the primarychamber increases the recirculation rate of combustion products and helps in achieving theflameless combustion mode.Based on preliminary computational studies,a 30 mm primarychamber exit pont diameter is chosen for experimental studies.Detailed experimentalinvestigations show that flameless combustion mode was achieved with evenly distributedcombustion reaction zone and unifom temperature distribution in the combustor.Pollutant emissions of CO, NO_(x),C_(x)H_(y) are measured and compared for all operating conditions ofdifferent fuels and different thermal inputs. The acoustic emission levels are reduced by6-8 dB as combustion mode shifts from conventional mode to flameless combustion mode.展开更多
During the experiment of gas/liquid coaxial swirl injector conducted with air and water under atmosphere environment, it is observed that the injector may selfoscillate. The self oscillation periodically occurs and va...During the experiment of gas/liquid coaxial swirl injector conducted with air and water under atmosphere environment, it is observed that the injector may selfoscillate. The self oscillation periodically occurs and vanishes with the increasing velocity of the gas flow.A theoretical model is presented based on the experiment investigation. Simulation of the acoustic process has been performed and conclusions consistent with the experiment can be drawn from the theoretical model, which explains the exPeriment phenomena quite well. At last, the comparison between phenomena of the self oscillation and some experiments of LRE indicates that some instability phenomena in oxygen/hydrogen propellant rocket engine may be the related to self oscillation in coaxial injectors展开更多
基金Supported by the Special Funds for Major State Basic Research (No. G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.
基金The project supported by the Special Funds for Major State Basic Research(G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.
文摘Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important
基金supported mainly by the National Natural Science Foundation of China under the Grant 50606026supported by the National Natural Science Foundation of China under the Grant 50736006the Foundation of the National Key Laboratory of Engines,Tianjin University underthe Grant K-2010-07
文摘Particle image velocimetry (PIV), thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios. Eulerian-Lagrangian large-eddy sim-ulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models, particle devolatilization and particle combustion models, are simultaneously used to simulate swirling coal combustion. Statistical LES results are validated by measurement results. Instantaneous LES results show that the coherent structures for swirling coal com- bustion are stronger than those for swirling gas combustion. Particles are shown to concentrate along the periphery of the coherent structures. Combustion flame is located in the high vorticity and high par-ticle concentration zones. Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.
文摘Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.
基金the National Basic Research Program (973) of China(No.2007CB210102)
文摘The development of integrated gasification combined cycle (IGCC) systems provides cost-effective and environmentally sound options for meeting the future coal-utilizing power generation needs in the worht. The combustion of gasified coal fuel significantly influences overall performance of IGCC power generation. Experi- ments are performed to investigate the characteristics of syngas swirling flame using the particle image velocimetry (PIV) in this paper. With the increase of CO/H2 molar ratio, the distance between the nozzle and the fuel vortex in flame increases at first, and then reduces slowly; maximum of the axial mean velocity increases continuously, but the axial mean velocity peaks on the side of centerline change little. The experiment indicates that with the increase of fuel to air velocity ratio, the fuel vortex grows up at first, and then becomes thinner; the distance from the fuel vortex to the nozzle reduces at first, and then increases; inner boundary of the recirculating zone increases. Furthermore, difference between the methane swirling flow field and the syngas swirling one is analyzed in this paper. It can establish the benchmarks for the development and validation of combustion numerical simulation by the data from this experiment.
文摘This paper presents the experimental and numerical results for a two stagecombustor capable of achieving flameless combustion with liquid fuels for different thermalheat inputs of 20,30,40 and 60 kW and heat release density of 5-15 MW/m^(3).Combustioncharacteristics and pollutant emissions are studied for three different fuels,kerosene,diesel andgasoline.The influence of droplet diameter on pollutant emissions at all conditions is studied.The fuel and oxidizer are supplied at ambient conditions.The concept of high swirl flows hasbeen adopted to achieve high intemal recirculation rates,residence time and increased dilutionof the fresh reactants in the primary combustion zone,resulting in flameless combustion mode.Air is injected through four tangential injection ports located near the bottom of the combustorand liquid fuel is injected through a centrally mounted pressure swirl injector.Computationalanalysis of the flow features shows that decrease in the exit port diameter of the primarychamber increases the recirculation rate of combustion products and helps in achieving theflameless combustion mode.Based on preliminary computational studies,a 30 mm primarychamber exit pont diameter is chosen for experimental studies.Detailed experimentalinvestigations show that flameless combustion mode was achieved with evenly distributedcombustion reaction zone and unifom temperature distribution in the combustor.Pollutant emissions of CO, NO_(x),C_(x)H_(y) are measured and compared for all operating conditions ofdifferent fuels and different thermal inputs. The acoustic emission levels are reduced by6-8 dB as combustion mode shifts from conventional mode to flameless combustion mode.
文摘During the experiment of gas/liquid coaxial swirl injector conducted with air and water under atmosphere environment, it is observed that the injector may selfoscillate. The self oscillation periodically occurs and vanishes with the increasing velocity of the gas flow.A theoretical model is presented based on the experiment investigation. Simulation of the acoustic process has been performed and conclusions consistent with the experiment can be drawn from the theoretical model, which explains the exPeriment phenomena quite well. At last, the comparison between phenomena of the self oscillation and some experiments of LRE indicates that some instability phenomena in oxygen/hydrogen propellant rocket engine may be the related to self oscillation in coaxial injectors