We propose and analyze a submicron stub-assisted ultrafast all-optical plasmonic switch based on nonlinear MIM waveguide. It is constructed by two silicon stub filters sandwiched by silver cladding. The signal wavelen...We propose and analyze a submicron stub-assisted ultrafast all-optical plasmonic switch based on nonlinear MIM waveguide. It is constructed by two silicon stub filters sandwiched by silver cladding. The signal wavelength is assumed to be 1550 nm. The simulation results show a ?14.66 dB extinction ratio. Downscaling the silicon waveguide in MIM structure leads to enhancement of the effective Kerr nonlinearity due to tight mode confinement. Also, using O+ ions implanted into silicon, the switching time less than 10 ps and a delay time less than 8 fs are achieved. The overall length of the switch is 550 nm.展开更多
We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refra...We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.展开更多
We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches(WSSs) based on silicon microring resonators(MRRs) with nested pairs of subrings(NPSs). Owing to the resonance splitting ...We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches(WSSs) based on silicon microring resonators(MRRs) with nested pairs of subrings(NPSs). Owing to the resonance splitting induced by the inner NPSs, the proposed devices are capable of performing selective channel routing at certain resonance wavelengths of the outer MRRs. System demonstration of dynamic channel routing using fabricated devices with one and two NPSs is carried out for 10 Gb∕s non-return-to-zero signal. The experimental results verify the effectiveness of the fabricated devices as compact on-chip WSSs.展开更多
A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metama...A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metamaterials(HMM) consisting of 20-pair alternating vanadium dioxide (VO_2)∕Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm × 220 nm × 200 nm(width × height × length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth(MD) of5.6 d B and insertion loss(IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD > 5 dB and IL < 1.25 dB. Furthermore, we discuss that the tungsten-doped VO_2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.展开更多
Stable switch control between multiple cameras for uncalibrated visual servoing was studied. Switch images based on fusion were presented to get the continuous dynamic image Jacobian matrix among robots and distribute...Stable switch control between multiple cameras for uncalibrated visual servoing was studied. Switch images based on fusion were presented to get the continuous dynamic image Jacobian matrix among robots and distributed visual sensors. The designed fusion algorithm is suitable to have dynamically adjustable fusion weights, and the fusion structure was analyzed. Simulations and experiments without any knowledge of mobile robots and uncalibrated visual sensors show that the method has higher adaptability than the traditional instant switch control method. The method can enhance the system stability at the switching process.展开更多
Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dyn...Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.展开更多
In this paper, we propose a hybrid network architecture, called Content-based Switching Network (CSN), and its signaling scheme, which addresses the issues inherent to conventional hybrid networks which implement a ho...In this paper, we propose a hybrid network architecture, called Content-based Switching Network (CSN), and its signaling scheme, which addresses the issues inherent to conventional hybrid networks which implement a horizontal separation over the entire network (from edge to edge). We will show how CSN nodes can flexibly choose their switching paradigm (store-and-forward, optical bypass, electrical bypass) during a path establishment. Contents being transferred in one piece from end-to-end, the concept of packet can be eluded in our network, and, in particular, the user is able to avoid complicated transport layer functions, like TCP, if they are not essential. In CSN, very large contents have a special status, since they cannot be store-and-forwarded. We will show how the resource management has been designed in order to deal with such contents. A section is dedicated to deployment and feasibility issues. Simulation results will show that CSN can successfully transfer contents at 1 Gbps and 10 Gbps, the maximum speed being limited by the state-of-the-art device technologies when buffering is required (memory speed), while no major limit is observed in the case of all-optical transfers other than the optical fiber speed. Other results concern the deployment of CSN from an unclean slate approach. They will show how beneficial can be the deployment of CSN from an Optical Circuit Switching network.展开更多
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is ...We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.展开更多
文摘We propose and analyze a submicron stub-assisted ultrafast all-optical plasmonic switch based on nonlinear MIM waveguide. It is constructed by two silicon stub filters sandwiched by silver cladding. The signal wavelength is assumed to be 1550 nm. The simulation results show a ?14.66 dB extinction ratio. Downscaling the silicon waveguide in MIM structure leads to enhancement of the effective Kerr nonlinearity due to tight mode confinement. Also, using O+ ions implanted into silicon, the switching time less than 10 ps and a delay time less than 8 fs are achieved. The overall length of the switch is 550 nm.
基金National Natural Science Foundation of China(NSFC)(61235007,61505104,61605112)Science and Technology Commission of Shanghai Municipality(15ZR1422800,16XD1401400)National Key R&D Program of China(2016YFB0402501)
文摘We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.
基金supported in part by the National Natural Science Foundation of China under Grant 61125504/61235007in part by the 863 High-Tech Program under Grant 2013AA013402
文摘We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches(WSSs) based on silicon microring resonators(MRRs) with nested pairs of subrings(NPSs). Owing to the resonance splitting induced by the inner NPSs, the proposed devices are capable of performing selective channel routing at certain resonance wavelengths of the outer MRRs. System demonstration of dynamic channel routing using fabricated devices with one and two NPSs is carried out for 10 Gb∕s non-return-to-zero signal. The experimental results verify the effectiveness of the fabricated devices as compact on-chip WSSs.
基金Ministry of Science and Technology of the People's Republic of China(MOST)(2016YFA0301300)National Natural Science Foundation of China(NSFC)(61275201,61372037)+2 种基金Beijing University of Posts and Telecommunications(BUPT)Excellent Ph.D.Students Foundation(CX2016204)Fundamental Research Funds for the Central Universities(2016RC24)Beijing Excellent Ph.D.Thesis Guidance Foundation(20131001301)
文摘A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon(Si) photonic stripe waveguide, a section of hyperbolic metamaterials(HMM) consisting of 20-pair alternating vanadium dioxide (VO_2)∕Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm × 220 nm × 200 nm(width × height × length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth(MD) of5.6 d B and insertion loss(IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD > 5 dB and IL < 1.25 dB. Furthermore, we discuss that the tungsten-doped VO_2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.
基金The National Natural Science Foundation of China (No 60428303)
文摘Stable switch control between multiple cameras for uncalibrated visual servoing was studied. Switch images based on fusion were presented to get the continuous dynamic image Jacobian matrix among robots and distributed visual sensors. The designed fusion algorithm is suitable to have dynamically adjustable fusion weights, and the fusion structure was analyzed. Simulations and experiments without any knowledge of mobile robots and uncalibrated visual sensors show that the method has higher adaptability than the traditional instant switch control method. The method can enhance the system stability at the switching process.
基金the key project of the National Science and Technology Major Project(Grant No.2018ZX03001017)the project of the CAS engineering laboratory for intelligent agricultural machinery equipment(Grant No.GC201907-02).
文摘Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.
文摘In this paper, we propose a hybrid network architecture, called Content-based Switching Network (CSN), and its signaling scheme, which addresses the issues inherent to conventional hybrid networks which implement a horizontal separation over the entire network (from edge to edge). We will show how CSN nodes can flexibly choose their switching paradigm (store-and-forward, optical bypass, electrical bypass) during a path establishment. Contents being transferred in one piece from end-to-end, the concept of packet can be eluded in our network, and, in particular, the user is able to avoid complicated transport layer functions, like TCP, if they are not essential. In CSN, very large contents have a special status, since they cannot be store-and-forwarded. We will show how the resource management has been designed in order to deal with such contents. A section is dedicated to deployment and feasibility issues. Simulation results will show that CSN can successfully transfer contents at 1 Gbps and 10 Gbps, the maximum speed being limited by the state-of-the-art device technologies when buffering is required (memory speed), while no major limit is observed in the case of all-optical transfers other than the optical fiber speed. Other results concern the deployment of CSN from an unclean slate approach. They will show how beneficial can be the deployment of CSN from an Optical Circuit Switching network.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303200the National Natural Science Foundation of China under Grant Nos U1732273,U1732159,91421109,91622115,11522432,11574217 and 61774133the Natural Science Foundation of Jiangsu Province under Grant No BK20160659
文摘We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.