As excitation strategy is influenced by the parity of phase number,and serious end effect is caused by full pitch windings adopted by the conventional rotor-segmented switched reluctance machine(RS-SRM),a novel rotor-...As excitation strategy is influenced by the parity of phase number,and serious end effect is caused by full pitch windings adopted by the conventional rotor-segmented switched reluctance machine(RS-SRM),a novel rotor-segmented axial-field switched reluctance machine(RS-AFSRM),which adopts concentrated windings,is proposed in this paper,whose control strategy is independent of the parity of phase number.The stator of the proposed RS-AFSRM consists of inner and outer flux-conductive ring,excitation poles,and stator yoke,while the rotor consists of fan-shape cylinder-type segments.The structure and principle of the proposed machine is introduced through the magnetic circuit model of the machine.The fringing effect on air-gap field is considered.The simplified magnetic circuit considering the fringing effect is presented and the fringing effect coefficient is introduced.The design procedure considering the fringing effect through iterative modification is presented in this paper and is validated through 3D finite-element method(3D-FEM).Results show that both magnetic field distribution and operation are reasonable and satisfy the requirements.展开更多
Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.T...Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.The different properties of rock and soil cause the varying interaction range and stress distribution.Currently,there have been several studies available to estimate excavation loads under RSI,and the conclusion is that the total loads increase with increasing the rock layer proportion in the excavation face.However,the previous studies cannot take the difference of rock/soil properties into account,except for the calculation of cutters loads.Therefore,the interaction characteristics between RSI and TBM is unclear.This paper analyzes the interaction characteristics between TBM’s main components and complex geological conditions(e.g.,layered soil,layered rock,and RSI condition).A model is proposed to calculate the total thrust and total torque assuming quasi-static equilibrium of the tunneling equipment.The rationality and applicability of the model are discussed and verified by two typical projects.Furthermore,the geological adaptability is discussed in terms of the excavation difficulty and the matching relationship between total torque and total thrust.The results indicate that when the rock layer proportion in the excavation face increases,the reduction of overall extrusion and friction loads is 1.5 times higher than the increase of disc cutters breaking load.The total loads and the ratio of the total torque to total thrust decrease approximately linearly.There is a power function relationship between the excavation difficulty index and the penetration depth.The results of this study provide an important reference for the total loads design of equipment propulsion systems and the parameter adjustment during tunnel construction.展开更多
Because its high efficiency, its simple stator and rotor structures, the low cost and high reliability, speed operation combined with robust and low cost construction, the switched reluctance machines have represented...Because its high efficiency, its simple stator and rotor structures, the low cost and high reliability, speed operation combined with robust and low cost construction, the switched reluctance machines have represented. In recent years, an interesting alternative to other machine types has been chosen for traction applications especially starter-generator. Their rotors do not generate significant heat, resulting in easy cooling. Their unidirectional flux and current may generate lower core losses and require a simple converter design. Moreover, the switched reluctance machines are known for their high reliability and capability of operating in four quadrants for a variable speed drive. Despite those merits, switched reluctance machine has not been extensively used until recently because of its problems of torque ripples and noise. Additionally, researchers have faced many difficulties to build a SRM model because it is inherently multivariable. It has strong coupling and especially a high nonlinearity. In this paper, we deal with many modeling methods. Numerical, analytical and intelligent approaches are studied. The important aim in this research is to use static results from FEMM simulation as flux-linkage, co-energy, static torque to form a dynamic model of a switched reluctance machine used next as a starter-generator of a hybrid vehicle.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507030.
文摘As excitation strategy is influenced by the parity of phase number,and serious end effect is caused by full pitch windings adopted by the conventional rotor-segmented switched reluctance machine(RS-SRM),a novel rotor-segmented axial-field switched reluctance machine(RS-AFSRM),which adopts concentrated windings,is proposed in this paper,whose control strategy is independent of the parity of phase number.The stator of the proposed RS-AFSRM consists of inner and outer flux-conductive ring,excitation poles,and stator yoke,while the rotor consists of fan-shape cylinder-type segments.The structure and principle of the proposed machine is introduced through the magnetic circuit model of the machine.The fringing effect on air-gap field is considered.The simplified magnetic circuit considering the fringing effect is presented and the fringing effect coefficient is introduced.The design procedure considering the fringing effect through iterative modification is presented in this paper and is validated through 3D finite-element method(3D-FEM).Results show that both magnetic field distribution and operation are reasonable and satisfy the requirements.
基金funded by National Key R&D Program of China[No.2018YFB1702505]National Natural Science Foundation of China[Grant Nos.12022205 and 11872269].
文摘Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.The different properties of rock and soil cause the varying interaction range and stress distribution.Currently,there have been several studies available to estimate excavation loads under RSI,and the conclusion is that the total loads increase with increasing the rock layer proportion in the excavation face.However,the previous studies cannot take the difference of rock/soil properties into account,except for the calculation of cutters loads.Therefore,the interaction characteristics between RSI and TBM is unclear.This paper analyzes the interaction characteristics between TBM’s main components and complex geological conditions(e.g.,layered soil,layered rock,and RSI condition).A model is proposed to calculate the total thrust and total torque assuming quasi-static equilibrium of the tunneling equipment.The rationality and applicability of the model are discussed and verified by two typical projects.Furthermore,the geological adaptability is discussed in terms of the excavation difficulty and the matching relationship between total torque and total thrust.The results indicate that when the rock layer proportion in the excavation face increases,the reduction of overall extrusion and friction loads is 1.5 times higher than the increase of disc cutters breaking load.The total loads and the ratio of the total torque to total thrust decrease approximately linearly.There is a power function relationship between the excavation difficulty index and the penetration depth.The results of this study provide an important reference for the total loads design of equipment propulsion systems and the parameter adjustment during tunnel construction.
文摘Because its high efficiency, its simple stator and rotor structures, the low cost and high reliability, speed operation combined with robust and low cost construction, the switched reluctance machines have represented. In recent years, an interesting alternative to other machine types has been chosen for traction applications especially starter-generator. Their rotors do not generate significant heat, resulting in easy cooling. Their unidirectional flux and current may generate lower core losses and require a simple converter design. Moreover, the switched reluctance machines are known for their high reliability and capability of operating in four quadrants for a variable speed drive. Despite those merits, switched reluctance machine has not been extensively used until recently because of its problems of torque ripples and noise. Additionally, researchers have faced many difficulties to build a SRM model because it is inherently multivariable. It has strong coupling and especially a high nonlinearity. In this paper, we deal with many modeling methods. Numerical, analytical and intelligent approaches are studied. The important aim in this research is to use static results from FEMM simulation as flux-linkage, co-energy, static torque to form a dynamic model of a switched reluctance machine used next as a starter-generator of a hybrid vehicle.