The repetitive unclamped inductive switching(UIS)avalanche stress is conducted to investigate the degradation and breakdown behaviors of conventional shield gate trench MOSFET(C-SGT)and P-ring SGT MOSFETs(P-SGT).It is...The repetitive unclamped inductive switching(UIS)avalanche stress is conducted to investigate the degradation and breakdown behaviors of conventional shield gate trench MOSFET(C-SGT)and P-ring SGT MOSFETs(P-SGT).It is found that the static and dynamic parameters of both devices show different degrees of degradation.Combining experimental and simulation results,the hot holes trapped into the Si/SiO_(2) interface and the increase of crystal lattice temperature should be responsible for the degradation and breakdown behaviors.Moreover,under repetitive UIS avalanche stress,the reliability of P-SGT overcomes that of C-SGT,benefitting from the decreasing of the impact ionization rate at bottom of field oxide caused by the existence of P-ring.展开更多
The influence of platform-switched abutment on stress distribution within the surrounding bone,fixture,abutment,and screw under various loading conditions were studied.Two 3-D finite element models representative of a...The influence of platform-switched abutment on stress distribution within the surrounding bone,fixture,abutment,and screw under various loading conditions were studied.Two 3-D finite element models representative of an implant-supported metal crown for the mandibular first molar and its surrounding bone were computed.Model A simulated the implant with non-platform-switched abutment and model B was for platform-switched abutment.A load of 100 N was applied vertically and obliquely at the center fossa,the tip of the buccal cusp and the distal fossa,respectively.The results show that the distribution of Von Mises stress in the two models is similar.When platform-switched abutment is used,the maximum Von Mises stress within the surrounding bone is lower;however,this value is higher within the fixture and screw.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61504049)Jiangsu Province Postdoctoral Science Foundation(Grant No.2018K057B)the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRP51510).
文摘The repetitive unclamped inductive switching(UIS)avalanche stress is conducted to investigate the degradation and breakdown behaviors of conventional shield gate trench MOSFET(C-SGT)and P-ring SGT MOSFETs(P-SGT).It is found that the static and dynamic parameters of both devices show different degrees of degradation.Combining experimental and simulation results,the hot holes trapped into the Si/SiO_(2) interface and the increase of crystal lattice temperature should be responsible for the degradation and breakdown behaviors.Moreover,under repetitive UIS avalanche stress,the reliability of P-SGT overcomes that of C-SGT,benefitting from the decreasing of the impact ionization rate at bottom of field oxide caused by the existence of P-ring.
基金Funded by the National Key Technology R&D Program of China during the 11th Five-year Plan (No.2007BAI18B05)
文摘The influence of platform-switched abutment on stress distribution within the surrounding bone,fixture,abutment,and screw under various loading conditions were studied.Two 3-D finite element models representative of an implant-supported metal crown for the mandibular first molar and its surrounding bone were computed.Model A simulated the implant with non-platform-switched abutment and model B was for platform-switched abutment.A load of 100 N was applied vertically and obliquely at the center fossa,the tip of the buccal cusp and the distal fossa,respectively.The results show that the distribution of Von Mises stress in the two models is similar.When platform-switched abutment is used,the maximum Von Mises stress within the surrounding bone is lower;however,this value is higher within the fixture and screw.