期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
RCSA-YOLO:改进YOLOv8的SAR舰船实例分割
1
作者 王磊 张斌 吴奇鸿 《计算机工程与应用》 CSCD 北大核心 2024年第18期103-113,共11页
针对合成孔径雷达(synthetic aperture radar,SAR)图像中背景复杂、目标小和尺度变化大等导致分割精度低的问题,提出了一种基于改进YOLOv8的SAR图像舰船实例分割算法RCSA-YOLO。利用结构重参数技术设计特征提取模块RepBlock,用以替换原... 针对合成孔径雷达(synthetic aperture radar,SAR)图像中背景复杂、目标小和尺度变化大等导致分割精度低的问题,提出了一种基于改进YOLOv8的SAR图像舰船实例分割算法RCSA-YOLO。利用结构重参数技术设计特征提取模块RepBlock,用以替换原网络中的C2f模块,增强网络的特征提取和特征表达能力,有效过滤了复杂背景噪声的干扰。使用基于内容感知的特征重组模块(content-aware reassembly of features,CARAFE)替换最近邻上采样方法,有效缓解了小目标信息丢失现象,提升了分割精细化程度。使用可切换空洞卷积(switchable atrous convolution,SAC)进行下采样操作,动态调整感受野大小,使模型具备更强的多尺度适应能力,确保了在不同尺寸舰船目标上的分割精度。在HRSID数据集上的实验结果表明,提出的算法可以将YOLOv8模型的AP_(50)值从87.7%提高到90.7%,较原算法提高了3个百分点。与主流的实例分割算法对比,SAR舰船实例分割精度也明显提升,证明了RCSA-YOLO的有效性。 展开更多
关键词 合成孔径雷达 结构重参数化 上采样 可切换空洞卷积
下载PDF
融合深度迁移学习和改进ThunderNet的瓷砖表面缺陷检测
2
作者 陈克琼 卓士虎 +3 位作者 赵晨曦 傅立涛 王家铭 李帷韬 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期208-218,共11页
瓷砖生产过程中由于环境的复杂性和随机性导致缺陷特性各异,实际中要构建大规模、高质量的瓷砖表面缺陷数据样本非常困难,而小样本条件下的可分特征信息不足对瓷砖表面缺陷检测的精度有较大影响。针对这一问题,探索了一种融合深度迁移... 瓷砖生产过程中由于环境的复杂性和随机性导致缺陷特性各异,实际中要构建大规模、高质量的瓷砖表面缺陷数据样本非常困难,而小样本条件下的可分特征信息不足对瓷砖表面缺陷检测的精度有较大影响。针对这一问题,探索了一种融合深度迁移学习和改进两阶段ThunderNet网络的瓷砖表面缺陷检测方法。首先,提出了一种基于改进ThunderNet网络的瓷砖表面缺陷检测模型,阐述了模型的结构与功能特点;其次,构造了瓷砖表面缺陷深度特征空间参数迁移决策机制,以有效提升样本特征表征能力;第三,基于可切换空洞卷积(switchable atrous convolution,SAC)优化ShuffleNet骨干网络,增强模型对缺陷形状变化的学习能力;第四,提出了基于多尺度映射和通道注意力(squeeze and excitation,SE)的特征融合算法,实现有限特征层次中瓷砖表面缺陷特征信息多层次差异化表征;最后,给出了融合深度迁移学习和改进ThunderNet网络的瓷砖表面缺陷检测算法。实验数据表明,在相同的瓷砖表面缺陷测试集上,本文方法对于小样本条件下瓷砖表面缺陷检测具有优越的性能,模型平均精度、平均召回率和平均检测速度分别达到87.22%、93.69%、61.6 ms/img,与传统ThunderNet模型相比,平均精度和平均召回率分别提高了9.30%、4.16%,其中,基于SAC最优空洞率组合{1,2},模型精度提高了5.51%,基于SE的最优压缩率24,模型精度提高了6.16%,基于本文迁移机制,模型精度提高了3.86%,同时加速了网络收敛。本文方法相比于传统ThunderNet网络和其他主流检测模型,通过迁移机制知识共享提高小样本对象特征表达能力,通过引入SAC和SE在控制模型规模的前提下实现对象特征的层次化表征,有效提升了模型的实时性和可靠性。 展开更多
关键词 瓷砖表面缺陷检测 可切换空洞卷积 迁移学习 通道注意力 特征融合 小样本
下载PDF
基于改进级联卷积神经网络的织物疵点检测
3
作者 李小庆 张俊杰 +2 位作者 杜小勤 梁晶 袁桦 《计算机与数字工程》 2024年第5期1557-1562,1568,共7页
为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方... 为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方法,同时引入复制粘贴以及混合的方式对样本进行扩充与增强;针对特征提取算法提取特征不精确的问题,对特征金字塔进行改进,通过加入可变形卷积、递归特征金字塔、可切换的空洞卷积、全局语义信息的方法扩大感受野、增强语义信息。实验结果验证了算法的有效性,该算法对天池雪浪制造数据集9种布匹疵点进行检测,检测是否具有瑕疵的准确率达到97%以上,疵点定位的平均检测精度为56.7%,样本检测效率为2.4 FPS。相对于基础模型定位精准度提升了10%以上,并且检测效果满足工业上的生产需求。 展开更多
关键词 织物疵点检测 级联卷积神经网络 数据增广 递归特征金字塔 可切换空洞卷积
下载PDF
改进的Cascade R-CNN算法在目标检测上的应用 被引量:3
4
作者 张娜 包梓群 +2 位作者 罗源 吴彪 涂小妹 《电子学报》 EI CAS CSCD 北大核心 2023年第4期896-906,共11页
针对Cascade R-CNN目标检测算法中存在检测精度较低以及目标遮挡问题,本文提出一种改进的Cas-cade R-CNN网络目标检测算法.该算法在主干网络ResNet101中引入可切换空洞卷积模块(Switchable Atrous Convolu-tion,SAC),该模块主要由两个... 针对Cascade R-CNN目标检测算法中存在检测精度较低以及目标遮挡问题,本文提出一种改进的Cas-cade R-CNN网络目标检测算法.该算法在主干网络ResNet101中引入可切换空洞卷积模块(Switchable Atrous Convolu-tion,SAC),该模块主要由两个全局上下文模块以及SAC组件构成,采用SAC组件以不同的空洞卷积率对特征进行卷积,并使用Switch函数收集特征来提高特征提取能力.同时,在ResNet101残差网络中引入坐标注意力机制(Coordi-nate Attention,CA),该机制将位置信息嵌入通道注意力中,用于更好地获取方向感知和位置感知信息,进而提高目标检测精度.此外,针对目标遮挡问题,引入Repulsion Loss损失函数.该损失函数主要由吸引项和排斥项组成,吸引项使得预测框和匹配上的目标框尽可能接近,排斥项使得预测框远离错误目标,进而减少非极大值抑制(Non-Maximum Suppression,NMS)的误检,提高目标检测中遮挡问题的检测精度.实验结果表明,在公开的科大讯飞AI挑战赛数据集上,与原算法测试性能相比,改进的Cascade R-CNN网络对该数据集检出率增长了2.39%,改进算法的识别精度有一定的提高. 展开更多
关键词 Cascade R-CNN 可切换空洞卷积 Repulsion Loss 目标检测 目标遮挡
下载PDF
基于CR-RFPR101的钢板表面缺陷检测 被引量:1
5
作者 李雪露 储茂祥 +1 位作者 杨永辉 刘光虎 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第12期1651-1658,共8页
针对钢板表面缺陷种类多、背景复杂、检测精度低等问题,文章首先对钢板表面缺陷数据集进行数据增强,并对原始Cascade区域卷积神经网络(region-basedconvolutional neural netwroks,R-CNN)算法进行改进,将ResNeXt-101-64×4d作为Casc... 针对钢板表面缺陷种类多、背景复杂、检测精度低等问题,文章首先对钢板表面缺陷数据集进行数据增强,并对原始Cascade区域卷积神经网络(region-basedconvolutional neural netwroks,R-CNN)算法进行改进,将ResNeXt-101-64×4d作为Cascade R-CNN算法的骨干网络,优化特征提取模块,利用递归特征金字塔(recursive feature pyramid,RFP)网络以反馈连接的方式进行特征优化,提出一种CR-RFPR101(Cascade R-CNN RFP ResNeXt-101-64×4d)的检测算法,以更好地保留细节和语义信息;同时使用可切换的空洞卷积替换主干网络的卷积层,以改变感受野的方式提高检测性能;最后使用引入软化非极大值抑制算法,保留有效信息,提高识别率。经实验验证,CR-RFPR101算法的检测率为83.4%,比原Cascade R-CNN算法提高了7.3%,满足了钢板表面缺陷检测要求。 展开更多
关键词 缺陷检测 数据增强 递归特征金字塔(RFP) 可切换的空洞卷积 软化非极大值抑制(Soft-NMS)
下载PDF
基于改进YOLOv3的高铁异物入侵检测算法 被引量:8
6
作者 张剑 王等准 +1 位作者 莫光健 谢本亮 《计算机技术与发展》 2022年第2期69-74,共6页
针对传统铁路异物检测方法中实时性不高、检测精度不够的问题,提出一种基于YOLOv3网络的高铁异物入侵的检测算法。为提高YOLOv3网络对图片特征的利用能力,利用可切换空洞卷积替代特征提取网络中的前四个3×3卷积,增加了卷积的感受... 针对传统铁路异物检测方法中实时性不高、检测精度不够的问题,提出一种基于YOLOv3网络的高铁异物入侵的检测算法。为提高YOLOv3网络对图片特征的利用能力,利用可切换空洞卷积替代特征提取网络中的前四个3×3卷积,增加了卷积的感受野。然后为提升小物体检测精度,改进FPN结构,从YOLOv3特征提取网络中第二次下采样输出的特征图建立104×104作为第四个尺度预测。通过在高铁异物检测数据集上的实验表明,改进后的YOLOv3高铁异物检测网络在检测速度稍降的情况下,平均检测精度达到79.1%,比原网络增加4.3%。改进YOLOv3高铁异物入侵检测网络能够提升不同尺度目标的检测精度,同时相较于其他目标检测网络有更好的检测精度与实时性。 展开更多
关键词 目标检测 高铁异物检测 YOLOv3 可切换空洞卷积 多尺度预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部