The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.Ho...The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor.展开更多
Power generation becomes the need of developed, developing and under developed countries to meet their increasing power requirements. When affordability increases their requirement of power increases, this happens whe...Power generation becomes the need of developed, developing and under developed countries to meet their increasing power requirements. When affordability increases their requirement of power increases, this happens when increased per capita consumption. The existing power scenario states that highest power is produced using firing of coals called thermal energy. A high efficiency Switched Reluctance Generator (SRG) based high frequency switching scheme to enhance the output for grid connectivity is designed, fabricated and evaluated. This proposed method generates the output for the low wind speed. It provides output at low speed because of multi-level DC-DC converter and storage system. It is an efficient solution for low wind power generation. The real time readings and results are discussed.展开更多
The aim of this paper is to analyze the potential of switched reluctance generator (SRG) in wind energy application. The machine comprises of switched reluctance generator, power converter and controller. In this pape...The aim of this paper is to analyze the potential of switched reluctance generator (SRG) in wind energy application. The machine comprises of switched reluctance generator, power converter and controller. In this paper the main ele-ments that form the generator system is discussed. It also highlights the common type of converter and structure used for SRG in wind energy application and types of control strategy available. Using power converter for switching the generator can operate over a wide speed range. Its applications in high speed area such as starter/generator for air-craft and gas turbine has been established, however the low/medium speed operation is still at an early stage of re-search. In order to subject the machine to various parameters, offline modeling is being investigated to produce the best optimum design.展开更多
This paper provides a comprehensive review of the recent development on the switched reluctance machine operating in generating mode in both the low and high speed operations. The machine consists of a salient rotor a...This paper provides a comprehensive review of the recent development on the switched reluctance machine operating in generating mode in both the low and high speed operations. The machine consists of a salient rotor and stator poles and controlled via switching of the power electronic devices. There is a steady development of the machine operating in the motoring mode;however, its generating operation is still under study. This paper gives an overview of the machine, followed by the principle of operation in generating mode and briefly discusses the structure and types of control methods which involve the switched reluctance generator (SRG). Due to its geometry simplicity and advantages such as robust, ability to operate over a wide speed range and absence of permanent magnet and windings on the rotor, the SRG promises to be a good candidate for variable speed application.展开更多
In order to control the output power of a switched reluctance generator(SRG)at a constant speed,the output power of SRG is theoretically analyzed by using freewheeling control.First,through a theoretical analysis,a fi...In order to control the output power of a switched reluctance generator(SRG)at a constant speed,the output power of SRG is theoretically analyzed by using freewheeling control.First,through a theoretical analysis,a finite element simulation and an experiment,it was verified that the output power of SRG cannot be improved by using freewheeling control with a single pulse control method(SPCM).Then,the maximum output power can be obtained by optimizing the turn off angles of SPCM at a constant speed,and at the same time,the formula of the optimal turn-off angle was presented,which meets the criterion for the output power maximization.Finally,numerical simulation and experimental results demonstrated the validity of the theoretical analysis.展开更多
This paper deals with various aspects of modeling, simulation, analysis, and control ofa SRG (switched reluctance generator) in different modes of operation. Excitation method of such a generator is shortly describe...This paper deals with various aspects of modeling, simulation, analysis, and control ofa SRG (switched reluctance generator) in different modes of operation. Excitation method of such a generator is shortly described. The output power of the SRG is controlled so that it can track the maximum output power of a wind turbine drive applications. Also, the output generator voltage is stabilized under either load or wind speed variations. Basic operational characteristics of a three-phase 6/4 SRG are developed through experimental observation. Meanwhile, the real-time operation was implemented in a DSP (digital signal processor) environment. The simulation of the complete system model has been obtained using the Matlab/Simulink software. A good agreement between experimental and simulation results has been observed which supports the validity of the proposed analysis.展开更多
针对低风速段开关磁阻风力发电机的运动电动势低于发电电动势、导致发电区间小于励磁区间的问题,将Z源网络耦合到励磁电源与不对称半桥功率变换器之间,强化励磁电压,加快励磁电流上升速度,减小励磁区间,提高低速发电效率;同时给励磁电...针对低风速段开关磁阻风力发电机的运动电动势低于发电电动势、导致发电区间小于励磁区间的问题,将Z源网络耦合到励磁电源与不对称半桥功率变换器之间,强化励磁电压,加快励磁电流上升速度,减小励磁区间,提高低速发电效率;同时给励磁电容充电,实现快速自励;并通过Z源网络实现滤波,节省成本,减小体积。Matlab仿真实验表明:与传统不对称半桥功率变换器相比,基于Z源网络新型功率变换器能明显提高SRG在低速段风能利用率和发电效率。20 k W小功率样机测试结果也验证了新型Z源网络功率变换器能优化开SRG低速性能。展开更多
A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cu...A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cur- rent-magnetic linkage-angle was built, By training these sample data from FEA, the angle of SRG rotor position was replaced by the output of DFNN to achieve SRG position sensorless. Simulation results show that the error between actual rotor position and estimate rotor position is small; SRG can commutate with great accuracy; and the output voltage of SRG wind power system under variable wind speed is essentially constant.展开更多
Wind energy can be considered a push-driver factor in the integration of renewable energy sources within the concept of smart grids.For its full deployment,it requires a modern telecommunication infrastructure for tra...Wind energy can be considered a push-driver factor in the integration of renewable energy sources within the concept of smart grids.For its full deployment,it requires a modern telecommunication infrastructure for transmitting control signals around the distributed generation,in which,the wireless communication standards stand out for employing modern digital modulation and coding schemes for error correction,in order to guarantee the power plant operability.In some developing countries,such as Brazil,the high penetration of commercial mobile wireless standards GPRS and EGPRS(based on GSM technology)have captivated the interests of the energy sector,and they now seek to perform remote monitoring and control operations.In this context,this article presents a comparative performance analysis of a wireless control system for a wind SRG,when a GPRS or EGPRS data service is employed.The system performance is analyzed by co-simulations,including the wind generator dynamics and the wireless channel effects.The satisfactory results endorse the viability and robustness of the proposed system.展开更多
基金This work is supported by the National Natural Science Foundation of China(52077141)the Natural Science Foundation of Liaoning Province(2021-YQ-09)the Liaoning Bai Qian Wan Talents Program,China。
文摘The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor.
文摘Power generation becomes the need of developed, developing and under developed countries to meet their increasing power requirements. When affordability increases their requirement of power increases, this happens when increased per capita consumption. The existing power scenario states that highest power is produced using firing of coals called thermal energy. A high efficiency Switched Reluctance Generator (SRG) based high frequency switching scheme to enhance the output for grid connectivity is designed, fabricated and evaluated. This proposed method generates the output for the low wind speed. It provides output at low speed because of multi-level DC-DC converter and storage system. It is an efficient solution for low wind power generation. The real time readings and results are discussed.
文摘The aim of this paper is to analyze the potential of switched reluctance generator (SRG) in wind energy application. The machine comprises of switched reluctance generator, power converter and controller. In this paper the main ele-ments that form the generator system is discussed. It also highlights the common type of converter and structure used for SRG in wind energy application and types of control strategy available. Using power converter for switching the generator can operate over a wide speed range. Its applications in high speed area such as starter/generator for air-craft and gas turbine has been established, however the low/medium speed operation is still at an early stage of re-search. In order to subject the machine to various parameters, offline modeling is being investigated to produce the best optimum design.
文摘This paper provides a comprehensive review of the recent development on the switched reluctance machine operating in generating mode in both the low and high speed operations. The machine consists of a salient rotor and stator poles and controlled via switching of the power electronic devices. There is a steady development of the machine operating in the motoring mode;however, its generating operation is still under study. This paper gives an overview of the machine, followed by the principle of operation in generating mode and briefly discusses the structure and types of control methods which involve the switched reluctance generator (SRG). Due to its geometry simplicity and advantages such as robust, ability to operate over a wide speed range and absence of permanent magnet and windings on the rotor, the SRG promises to be a good candidate for variable speed application.
文摘In order to control the output power of a switched reluctance generator(SRG)at a constant speed,the output power of SRG is theoretically analyzed by using freewheeling control.First,through a theoretical analysis,a finite element simulation and an experiment,it was verified that the output power of SRG cannot be improved by using freewheeling control with a single pulse control method(SPCM).Then,the maximum output power can be obtained by optimizing the turn off angles of SPCM at a constant speed,and at the same time,the formula of the optimal turn-off angle was presented,which meets the criterion for the output power maximization.Finally,numerical simulation and experimental results demonstrated the validity of the theoretical analysis.
文摘This paper deals with various aspects of modeling, simulation, analysis, and control ofa SRG (switched reluctance generator) in different modes of operation. Excitation method of such a generator is shortly described. The output power of the SRG is controlled so that it can track the maximum output power of a wind turbine drive applications. Also, the output generator voltage is stabilized under either load or wind speed variations. Basic operational characteristics of a three-phase 6/4 SRG are developed through experimental observation. Meanwhile, the real-time operation was implemented in a DSP (digital signal processor) environment. The simulation of the complete system model has been obtained using the Matlab/Simulink software. A good agreement between experimental and simulation results has been observed which supports the validity of the proposed analysis.
文摘针对低风速段开关磁阻风力发电机的运动电动势低于发电电动势、导致发电区间小于励磁区间的问题,将Z源网络耦合到励磁电源与不对称半桥功率变换器之间,强化励磁电压,加快励磁电流上升速度,减小励磁区间,提高低速发电效率;同时给励磁电容充电,实现快速自励;并通过Z源网络实现滤波,节省成本,减小体积。Matlab仿真实验表明:与传统不对称半桥功率变换器相比,基于Z源网络新型功率变换器能明显提高SRG在低速段风能利用率和发电效率。20 k W小功率样机测试结果也验证了新型Z源网络功率变换器能优化开SRG低速性能。
基金Supported by the National Natural Science Foundation of China (50977080) the Science & Technology Department Project of Hunan Province (2010F J3116) the Education Department Project of Hunan Province ( 10A 114)
文摘A new method of switched reluctance wind power generation position sensorless based on DFNN by FEA was proposed, Through current and magnetic linkage to get the angle of SRG rotor position, the nonlinear mapping of cur- rent-magnetic linkage-angle was built, By training these sample data from FEA, the angle of SRG rotor position was replaced by the output of DFNN to achieve SRG position sensorless. Simulation results show that the error between actual rotor position and estimate rotor position is small; SRG can commutate with great accuracy; and the output voltage of SRG wind power system under variable wind speed is essentially constant.
文摘Wind energy can be considered a push-driver factor in the integration of renewable energy sources within the concept of smart grids.For its full deployment,it requires a modern telecommunication infrastructure for transmitting control signals around the distributed generation,in which,the wireless communication standards stand out for employing modern digital modulation and coding schemes for error correction,in order to guarantee the power plant operability.In some developing countries,such as Brazil,the high penetration of commercial mobile wireless standards GPRS and EGPRS(based on GSM technology)have captivated the interests of the energy sector,and they now seek to perform remote monitoring and control operations.In this context,this article presents a comparative performance analysis of a wireless control system for a wind SRG,when a GPRS or EGPRS data service is employed.The system performance is analyzed by co-simulations,including the wind generator dynamics and the wireless channel effects.The satisfactory results endorse the viability and robustness of the proposed system.