Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, s...Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A ...In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.展开更多
With the evolution of converter fed machines (CFMs), it becomes important to evaluate the power potential of such machines of vastly different topologies with a variety of waveforms of back emf and current. It is base...With the evolution of converter fed machines (CFMs), it becomes important to evaluate the power potential of such machines of vastly different topologies with a variety of waveforms of back emf and current. It is based on the generalized sizing equations and permits the evaluation of the main dimensions with respect to the power of those machines. In this paper, a general approach is presented to extend the evaluation method of machine power density to the switched reluctance (SR) machine, and furthermore to compare the power production capability between the SR machine and the well known squirrel cage induction machine.展开更多
A Single Switch Hybrid Step-up Converter with high voltage gain, which is suitable for renewable energy system, is proposed in this paper. The proposed converter consists of one switched diode-inductor cell and a capa...A Single Switch Hybrid Step-up Converter with high voltage gain, which is suitable for renewable energy system, is proposed in this paper. The proposed converter consists of one switched diode-inductor cell and a capacitor. While switching, both are charged in parallel from the input source and discharged in series to the output. In order to obtain extra voltage gain at lower duty cycle, the voltage multiplier cell is integrated with the proposed converter. The main advantages of the converter are high voltage gain, reduced voltage stress, simple structure and low output voltage ripples. The operating principle and steady state theoretical analysis are presented. A 250 W prototype converter is implemented with 12 V input and 120 V output to verify the design and analysis of this converter and it has an efficiency of over 90% in all operations.展开更多
The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capa...The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capacitor voltage ripple is a severe challenge faced by MMC at low motor speeds.Recently,a hybrid MMC(HMMC)topology is proven to be a competitive solution because of its lower cell capacitor voltage ripple and not demonstrating a common-mode voltage(CMV)problem compared with other methods.However,the DC-link switch with IGBT limits HMMC from being applied in highvoltage applications.This paper uses a thyristor instead of IGBT as the DC-link switch.To ensure the thyristor can be softly turned on and safely turned off,a new control scheme is proposed.When using this proposed scheme,HMMC can also tolerate the failure of the thyristor being turned-off without shutting down the system,effectively improving its reliability.The cell capacitor voltage ripple analysis is presented considering the effects of the thyristor switching process.In addition,a decoupled energy balancing control is utilized to suppress the fluctuation of the DC current.Experimental results obtained from a 380 V/7.5 kW downscaled prototype validate the effectiveness of starting up a motor from the standby mode to rated speed applying full-torque.展开更多
文中提出一种新型单级式隔离AC-DC变换器及控制方案。所提结构在不改变图腾柱无桥功率因数校正(totem pole bridge-free power factor correction,TP-PFC)和双向全桥(dual active bridge,DAB)两级式AC-DC变换器特性的前提下,将TP-PFC高...文中提出一种新型单级式隔离AC-DC变换器及控制方案。所提结构在不改变图腾柱无桥功率因数校正(totem pole bridge-free power factor correction,TP-PFC)和双向全桥(dual active bridge,DAB)两级式AC-DC变换器特性的前提下,将TP-PFC高频桥臂和DAB原边侧第一个桥臂进行开关复用,减小了开关器件数目。同时,相较于TP-PFC和DAB两级式AC-DC变换器,取消了直流母线电解电容并且抑制了交流电感电流尖峰。利用其拓扑特点及所提出的控制方案,实现了拓扑开关器件的全范围软开关。首先详细分析所提拓扑结构的工作特性,包括工作模态、拓扑优点、功率特性及软开关特性;其次基于对拓扑的分析,提出控制简单的控制策略;最后,对所提拓扑结构及控制方案进行实验验证。展开更多
文摘Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.
文摘With the evolution of converter fed machines (CFMs), it becomes important to evaluate the power potential of such machines of vastly different topologies with a variety of waveforms of back emf and current. It is based on the generalized sizing equations and permits the evaluation of the main dimensions with respect to the power of those machines. In this paper, a general approach is presented to extend the evaluation method of machine power density to the switched reluctance (SR) machine, and furthermore to compare the power production capability between the SR machine and the well known squirrel cage induction machine.
文摘A Single Switch Hybrid Step-up Converter with high voltage gain, which is suitable for renewable energy system, is proposed in this paper. The proposed converter consists of one switched diode-inductor cell and a capacitor. While switching, both are charged in parallel from the input source and discharged in series to the output. In order to obtain extra voltage gain at lower duty cycle, the voltage multiplier cell is integrated with the proposed converter. The main advantages of the converter are high voltage gain, reduced voltage stress, simple structure and low output voltage ripples. The operating principle and steady state theoretical analysis are presented. A 250 W prototype converter is implemented with 12 V input and 120 V output to verify the design and analysis of this converter and it has an efficiency of over 90% in all operations.
基金This work was supported by the National Natural Science Foundation of China under Grant 51720105008 and 52177173。
文摘The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capacitor voltage ripple is a severe challenge faced by MMC at low motor speeds.Recently,a hybrid MMC(HMMC)topology is proven to be a competitive solution because of its lower cell capacitor voltage ripple and not demonstrating a common-mode voltage(CMV)problem compared with other methods.However,the DC-link switch with IGBT limits HMMC from being applied in highvoltage applications.This paper uses a thyristor instead of IGBT as the DC-link switch.To ensure the thyristor can be softly turned on and safely turned off,a new control scheme is proposed.When using this proposed scheme,HMMC can also tolerate the failure of the thyristor being turned-off without shutting down the system,effectively improving its reliability.The cell capacitor voltage ripple analysis is presented considering the effects of the thyristor switching process.In addition,a decoupled energy balancing control is utilized to suppress the fluctuation of the DC current.Experimental results obtained from a 380 V/7.5 kW downscaled prototype validate the effectiveness of starting up a motor from the standby mode to rated speed applying full-torque.
文摘文中提出一种新型单级式隔离AC-DC变换器及控制方案。所提结构在不改变图腾柱无桥功率因数校正(totem pole bridge-free power factor correction,TP-PFC)和双向全桥(dual active bridge,DAB)两级式AC-DC变换器特性的前提下,将TP-PFC高频桥臂和DAB原边侧第一个桥臂进行开关复用,减小了开关器件数目。同时,相较于TP-PFC和DAB两级式AC-DC变换器,取消了直流母线电解电容并且抑制了交流电感电流尖峰。利用其拓扑特点及所提出的控制方案,实现了拓扑开关器件的全范围软开关。首先详细分析所提拓扑结构的工作特性,包括工作模态、拓扑优点、功率特性及软开关特性;其次基于对拓扑的分析,提出控制简单的控制策略;最后,对所提拓扑结构及控制方案进行实验验证。