A split gate MOSFET(SG-MOSFET)is widely known for reducing the reverse transfer capacitance(C_(RSS)).In a 3.3 kV class,the SG-MOSFET does not provide reliable operation due to the high gate oxide electric field.In add...A split gate MOSFET(SG-MOSFET)is widely known for reducing the reverse transfer capacitance(C_(RSS)).In a 3.3 kV class,the SG-MOSFET does not provide reliable operation due to the high gate oxide electric field.In addition to the poor static performance,the SG-MOSFET has issues such as the punch through and drain-induced barrier lowering(DIBL)caused by the high gate oxide electric field.As such,a 3.3 kV 4 H-SiC split gate MOSFET with a grounded central implant region(SG-CIMOSFET)is proposed to resolve these issues and for achieving a superior trade-off between the static and switching performance.The SG-CIMOSFET has a significantly low on-resistance(R_(ON))and maximum gate oxide field(E_(OX))due to the central implant region.A grounded central implant region significantly reduces the C_(RSS)and gate drain charge(Q_(GD))by partially screening the gate-to-drain capacitive coupling.Compared to a planar MOSFET,the SG MOSFET,central implant MOSFET(CIMOSFET),the SGCIMOSFET improve the R_(ON)×Q_(GD)by 83.7%,72.4%and 44.5%,respectively.The results show that the device features not only the smallest switching energy loss but also the fastest switching time.展开更多
An optimized silicon carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)structure with side-wall p-type pillar(p-pillar)and wrap n-type pillar(n-pillar)in the n-drain was investigated by utili...An optimized silicon carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)structure with side-wall p-type pillar(p-pillar)and wrap n-type pillar(n-pillar)in the n-drain was investigated by utilizing Silvaco TCAD simulations.The optimized structure mainly includes a p+buried region,a light n-type current spreading layer(CSL),a p-type pillar region,and a wrapping n-type pillar region at the right and bottom of the p-pillar.The improved structure is named as SNPPT-MOS.The side-wall p-pillar region could better relieve the high electric field around the p+shielding region and the gate oxide in the off-state mode.The wrapping n-pillar region and CSL can also effectively reduce the specific on-resistance(Ron,sp).As a result,the SNPPT-MOS structure exhibits that the figure of merit(Fo M)related to the breakdown voltage(V_(BR))and Ron,sp(V_(BR)^2R_(on,sp))of the SNPPT-MOS is improved by 44.5%,in comparison to that of the conventional trench gate SJ MOSFET(full-SJ-MOS).In addition,the SNPPT-MOS structure achieves a much fasterwitching speed than the full-SJ-MOS,and the result indicates an appreciable reduction in the switching energy loss.展开更多
This article investigates an improved 4H-SiC trench gate metal–oxide–semiconductor field-effect transistor(MOSFET)(UMOSFET)fitted with a super-junction(SJ)shielded region.The modified structure is composed of two n-...This article investigates an improved 4H-SiC trench gate metal–oxide–semiconductor field-effect transistor(MOSFET)(UMOSFET)fitted with a super-junction(SJ)shielded region.The modified structure is composed of two n-type conductive pillars,three p-type conductive pillars,an oxide trench under the gate,and a light n-type current spreading layer(NCSL)under the p-body.The n-type conductive pillars and the light n-type current spreading layer provide two paths to and promote the diffusion of a transverse current in the epitaxial layer,thus improving the specific on-resistance(R_(on,sp)).There are three p-type pillars in the modified structure,with the p-type pillars on both sides playing the same role.The p-type conductive pillars relieve the electric field(E-field)in the corner of the trench bottom.Two-dimensional simulation(silvaco TCAD)indicates that Ron,sp of the modified structure,and breakdown voltage(V_(BR))are improved by 22.2%and 21.1%respectively,while the maximum figure of merit(FOM=V_(BR)^(2)/R_(on,sp)) is improved by 79.0%.Furthermore,the improved structure achieves a light smaller low gate-to-drain charge(Q_(gd))and when compared with the conventional UMOSFET(conventional-UMOS),it displays great advantages for reducing the switching energy loss.These advantages are due to the fact that the p-type conductive pillars and n-type conductive pillars configured under the gate provide a substantial charge balance,which also enables the charge carriers to be extracted quickly.In the end,under the condition of the same total charge quantity,the simulation comparison of gate charge and OFF-state characteristics between Gaussdoped structure and uniform-doped structure shows that Gauss-doped structure increases the V_(BR)of the device without degradation of dynamic performance.展开更多
A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The adv...A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET.In particular,the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed.The on-resistance of SS-UMOS with grounded(G)and ungrounded(NG)p-pillar is reduced by 52%(G)and 71%(NG)compared to CT-UMOS,respectively.Additionally,gate ox-ide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions.Thus,a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer.However,the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar,resulting in a large electric field of 2.7 MV/cm at the gate oxide layer.Moreover,the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18%compared with CT-UMOS.On the contrary,the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three.The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications,and will provide a valuable idea for device design and circuit applications.展开更多
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2018-0-01421)supervised by the IITP(Institute for Information&communications Technology Promotion)then Samsung Electronics.
文摘A split gate MOSFET(SG-MOSFET)is widely known for reducing the reverse transfer capacitance(C_(RSS)).In a 3.3 kV class,the SG-MOSFET does not provide reliable operation due to the high gate oxide electric field.In addition to the poor static performance,the SG-MOSFET has issues such as the punch through and drain-induced barrier lowering(DIBL)caused by the high gate oxide electric field.As such,a 3.3 kV 4 H-SiC split gate MOSFET with a grounded central implant region(SG-CIMOSFET)is proposed to resolve these issues and for achieving a superior trade-off between the static and switching performance.The SG-CIMOSFET has a significantly low on-resistance(R_(ON))and maximum gate oxide field(E_(OX))due to the central implant region.A grounded central implant region significantly reduces the C_(RSS)and gate drain charge(Q_(GD))by partially screening the gate-to-drain capacitive coupling.Compared to a planar MOSFET,the SG MOSFET,central implant MOSFET(CIMOSFET),the SGCIMOSFET improve the R_(ON)×Q_(GD)by 83.7%,72.4%and 44.5%,respectively.The results show that the device features not only the smallest switching energy loss but also the fastest switching time.
基金the National Natural Science Foundation of China(Grant Nos.61774052 and 61904045)the National Natural Science Foundation of Jiangxi Province of China(Grant No.20202BABL201021)the Education Department of Jiangxi Province of China for Youth Foundation(Grant No.GJJ191154)。
文摘An optimized silicon carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)structure with side-wall p-type pillar(p-pillar)and wrap n-type pillar(n-pillar)in the n-drain was investigated by utilizing Silvaco TCAD simulations.The optimized structure mainly includes a p+buried region,a light n-type current spreading layer(CSL),a p-type pillar region,and a wrapping n-type pillar region at the right and bottom of the p-pillar.The improved structure is named as SNPPT-MOS.The side-wall p-pillar region could better relieve the high electric field around the p+shielding region and the gate oxide in the off-state mode.The wrapping n-pillar region and CSL can also effectively reduce the specific on-resistance(Ron,sp).As a result,the SNPPT-MOS structure exhibits that the figure of merit(Fo M)related to the breakdown voltage(V_(BR))and Ron,sp(V_(BR)^2R_(on,sp))of the SNPPT-MOS is improved by 44.5%,in comparison to that of the conventional trench gate SJ MOSFET(full-SJ-MOS).In addition,the SNPPT-MOS structure achieves a much fasterwitching speed than the full-SJ-MOS,and the result indicates an appreciable reduction in the switching energy loss.
基金the National Natural Science Foundation of China(Grant Nos.61774052 and 61904045)the Youth Foundation of the Education Department of Jiangxi Province,China(Grant No.GJJ191154)the Youth Foundation of Ping Xiang University,China(Grant No.2018D0230).
文摘This article investigates an improved 4H-SiC trench gate metal–oxide–semiconductor field-effect transistor(MOSFET)(UMOSFET)fitted with a super-junction(SJ)shielded region.The modified structure is composed of two n-type conductive pillars,three p-type conductive pillars,an oxide trench under the gate,and a light n-type current spreading layer(NCSL)under the p-body.The n-type conductive pillars and the light n-type current spreading layer provide two paths to and promote the diffusion of a transverse current in the epitaxial layer,thus improving the specific on-resistance(R_(on,sp)).There are three p-type pillars in the modified structure,with the p-type pillars on both sides playing the same role.The p-type conductive pillars relieve the electric field(E-field)in the corner of the trench bottom.Two-dimensional simulation(silvaco TCAD)indicates that Ron,sp of the modified structure,and breakdown voltage(V_(BR))are improved by 22.2%and 21.1%respectively,while the maximum figure of merit(FOM=V_(BR)^(2)/R_(on,sp)) is improved by 79.0%.Furthermore,the improved structure achieves a light smaller low gate-to-drain charge(Q_(gd))and when compared with the conventional UMOSFET(conventional-UMOS),it displays great advantages for reducing the switching energy loss.These advantages are due to the fact that the p-type conductive pillars and n-type conductive pillars configured under the gate provide a substantial charge balance,which also enables the charge carriers to be extracted quickly.In the end,under the condition of the same total charge quantity,the simulation comparison of gate charge and OFF-state characteristics between Gaussdoped structure and uniform-doped structure shows that Gauss-doped structure increases the V_(BR)of the device without degradation of dynamic performance.
基金supported by the National Natural Science Foundation of China(Grant No.62104222)the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(Grant No.2020J06002)+3 种基金the Science and Technology Project of Fujian Province of China(Grant No.2020I0001)the Science and Technology Key Projects of Xiamen(Grant No.3502ZCQ20191001)Shenzhen Science and Technology Program(Grant No.JSGG20201102-155800003)Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB212005).
文摘A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET.In particular,the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed.The on-resistance of SS-UMOS with grounded(G)and ungrounded(NG)p-pillar is reduced by 52%(G)and 71%(NG)compared to CT-UMOS,respectively.Additionally,gate ox-ide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions.Thus,a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer.However,the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar,resulting in a large electric field of 2.7 MV/cm at the gate oxide layer.Moreover,the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18%compared with CT-UMOS.On the contrary,the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three.The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications,and will provide a valuable idea for device design and circuit applications.