The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control s...The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.展开更多
This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian li...This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61104146/F030203)Innovation Plan of Aero Engine Complex System Safety by the Ministry of Education Chang Jiang Scholars of China (Grant No. IRT0905)
文摘The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.
基金supported by the National Natural Science Foundation of China(Nos.61374012,61273083 and 61403028)
文摘This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.