Simultaneously imposed challenges of highvoltage insulation,high dv/dt,highswitching frequency,fast protection,and thermal management associated with the adoption of 10 kV SiC MOSFET,often pose nearly insurmountable b...Simultaneously imposed challenges of highvoltage insulation,high dv/dt,highswitching frequency,fast protection,and thermal management associated with the adoption of 10 kV SiC MOSFET,often pose nearly insurmountable barriers to potential users,undoubtedly hindering their penetration in mediumvoltage(MV)power conversion.Key novel technologies such as enhanced gatedriver,auxiliary power supply network,PCB planar dcbus,and highdensity inductor are presented,enabling the SiCbased designs in modular MV converters,overcoming aforementioned challenges.However,purely substituting SiC design instead of Sibased ones in modular MV converters,would expectedly yield only limited gains.Therefore,to further elevate SiCbased designs,novel highbandwidth control strategies such as switchingcycle control(SCC)and integrated capacitorblocked transistor(ICBT),as well as highperformance/highbandwidth communication network are developed.All these technologies combined,overcome barriers posed by stateoftheart Si designs and unlock system level benefits such as very high power density,highefficiency,fast dynamic response,unrestricted line frequency operation,and improved power quality,all demonstrated throughout this paper.展开更多
基金conducted under ARPA-e from DOE with the award number DE-AR0000892.
文摘Simultaneously imposed challenges of highvoltage insulation,high dv/dt,highswitching frequency,fast protection,and thermal management associated with the adoption of 10 kV SiC MOSFET,often pose nearly insurmountable barriers to potential users,undoubtedly hindering their penetration in mediumvoltage(MV)power conversion.Key novel technologies such as enhanced gatedriver,auxiliary power supply network,PCB planar dcbus,and highdensity inductor are presented,enabling the SiCbased designs in modular MV converters,overcoming aforementioned challenges.However,purely substituting SiC design instead of Sibased ones in modular MV converters,would expectedly yield only limited gains.Therefore,to further elevate SiCbased designs,novel highbandwidth control strategies such as switchingcycle control(SCC)and integrated capacitorblocked transistor(ICBT),as well as highperformance/highbandwidth communication network are developed.All these technologies combined,overcome barriers posed by stateoftheart Si designs and unlock system level benefits such as very high power density,highefficiency,fast dynamic response,unrestricted line frequency operation,and improved power quality,all demonstrated throughout this paper.