This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations ...This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.展开更多
Purpose–Forecasting of stock indices is a challenging issue because stock data are dynamic,non-linear and uncertain in nature.Selection of an accurate forecasting model is very much essential to predict the next-day ...Purpose–Forecasting of stock indices is a challenging issue because stock data are dynamic,non-linear and uncertain in nature.Selection of an accurate forecasting model is very much essential to predict the next-day closing prices of the stock indices.The purpose of this paper is to develop an efficient and accurate forecasting model to predict the next-day closing prices of seven stock indices.Design/methodology/approach–A novel strategy called quasi-oppositional symbiotic organisms search-based extreme learning machine(QSOS-ELM)is proposed to forecast the next-day closing prices effectively.Accuracy in the prediction of closing price depends on output weights which are dependent on input weights and biases.This paper mainly deals with the optimal design of input weights and biases of the ELM prediction model using QSOS and SOS optimization algorithms.Findings–Simulation is carried out on seven stock indices,and performance analysis of QSOS-ELM and SOS-ELM prediction models is done by taking various statistical measures such as mean square error,mean absolute percentage error,accuracy and paired sample t-test.Comparative performance analysis reveals that the QSOS-ELM model outperforms the SOS-ELM model in predicting the next-day closing prices more accurately for all the seven stock indices under study.Originality/value–The QSOS-ELM prediction model and SOS-ELM are developed for the first time to predict the next-day closing prices of various stock indices.The paired t-test is also carried out for the first time in literature to hypothetically prove that there is a zero mean difference between the predicted and actual closing prices.展开更多
Rainfall prediction becomes popular in real time environment due to the developments of recent technologies.Accurate and fast rainfall predictive models can be designed by the use of machine learning(ML),statistical m...Rainfall prediction becomes popular in real time environment due to the developments of recent technologies.Accurate and fast rainfall predictive models can be designed by the use of machine learning(ML),statistical models,etc.Besides,feature selection approaches can be derived for eliminating the curse of dimensionality problems.In this aspect,this paper presents a novel chaotic spider money optimization with optimal kernel ridge regression(CSMO-OKRR)model for accurate rainfall prediction.The goal of the CSMO-OKRR technique is to properly predict the rainfall using the weather data.The proposed CSMO-OKRR technique encompasses three major processes namely feature selection,prediction,and parameter tuning.Initially,the CSMO algorithm is employed to derive a useful subset of features and reduce the computational complexity.In addition,the KRR model is used for the prediction of rainfall based on weather data.Lastly,the symbiotic organism search(SOS)algorithm is employed to properly tune the parameters involved in it.A series of simulations are performed to demonstrate the better performance of the CSMO-OKRR technique with respect to different measures.The simulation results reported the enhanced outcomes of the CSMO-OKRR technique with existing techniques.展开更多
As an important part of product design and manufacturing, assembly sequence planning (ASP) has a considerable impact on product quality and manufacturing costs. ASP is a typical NP-complete problem that requires effec...As an important part of product design and manufacturing, assembly sequence planning (ASP) has a considerable impact on product quality and manufacturing costs. ASP is a typical NP-complete problem that requires effective methods to find the optimal or near-optimal assembly sequence. First, multiple assembly constraints and rules are incorporated into an assembly model. The assembly constraints and rules guarantee to obtain a reasonable assembly sequence. Second, an algorithm called SOS-ACO that combines symbiotic organisms search (SOS) and ant colony optimization (ACO) is proposed to calculate the optimal or near-optimal assembly sequence. Several of the ACO parameter values are given, and the remaining ones are adaptively optimized by SOS. Thus, the complexity of ACO parameter assignment is greatly reduced. Compared with the ACO algorithm, the hybrid SOS-ACO algorithm finds optimal or near-optimal assembly sequences in fewer iterations. SOS-ACO is also robust in identifying the best assembly sequence in nearly every experiment. Lastly, the performance of SOS-ACO when the given ACO parameters are changed is analyzed through experiments. Experimental results reveal that SOS-ACO has good adaptive capability to various values of given parameters and can achieve competitive solutions.展开更多
文摘This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.
文摘Purpose–Forecasting of stock indices is a challenging issue because stock data are dynamic,non-linear and uncertain in nature.Selection of an accurate forecasting model is very much essential to predict the next-day closing prices of the stock indices.The purpose of this paper is to develop an efficient and accurate forecasting model to predict the next-day closing prices of seven stock indices.Design/methodology/approach–A novel strategy called quasi-oppositional symbiotic organisms search-based extreme learning machine(QSOS-ELM)is proposed to forecast the next-day closing prices effectively.Accuracy in the prediction of closing price depends on output weights which are dependent on input weights and biases.This paper mainly deals with the optimal design of input weights and biases of the ELM prediction model using QSOS and SOS optimization algorithms.Findings–Simulation is carried out on seven stock indices,and performance analysis of QSOS-ELM and SOS-ELM prediction models is done by taking various statistical measures such as mean square error,mean absolute percentage error,accuracy and paired sample t-test.Comparative performance analysis reveals that the QSOS-ELM model outperforms the SOS-ELM model in predicting the next-day closing prices more accurately for all the seven stock indices under study.Originality/value–The QSOS-ELM prediction model and SOS-ELM are developed for the first time to predict the next-day closing prices of various stock indices.The paired t-test is also carried out for the first time in literature to hypothetically prove that there is a zero mean difference between the predicted and actual closing prices.
基金This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under Grant No.(D-356-611-1443).
文摘Rainfall prediction becomes popular in real time environment due to the developments of recent technologies.Accurate and fast rainfall predictive models can be designed by the use of machine learning(ML),statistical models,etc.Besides,feature selection approaches can be derived for eliminating the curse of dimensionality problems.In this aspect,this paper presents a novel chaotic spider money optimization with optimal kernel ridge regression(CSMO-OKRR)model for accurate rainfall prediction.The goal of the CSMO-OKRR technique is to properly predict the rainfall using the weather data.The proposed CSMO-OKRR technique encompasses three major processes namely feature selection,prediction,and parameter tuning.Initially,the CSMO algorithm is employed to derive a useful subset of features and reduce the computational complexity.In addition,the KRR model is used for the prediction of rainfall based on weather data.Lastly,the symbiotic organism search(SOS)algorithm is employed to properly tune the parameters involved in it.A series of simulations are performed to demonstrate the better performance of the CSMO-OKRR technique with respect to different measures.The simulation results reported the enhanced outcomes of the CSMO-OKRR technique with existing techniques.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFB1501302)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018ZD09 and 2018MS039)It is also supported by the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,China。
文摘As an important part of product design and manufacturing, assembly sequence planning (ASP) has a considerable impact on product quality and manufacturing costs. ASP is a typical NP-complete problem that requires effective methods to find the optimal or near-optimal assembly sequence. First, multiple assembly constraints and rules are incorporated into an assembly model. The assembly constraints and rules guarantee to obtain a reasonable assembly sequence. Second, an algorithm called SOS-ACO that combines symbiotic organisms search (SOS) and ant colony optimization (ACO) is proposed to calculate the optimal or near-optimal assembly sequence. Several of the ACO parameter values are given, and the remaining ones are adaptively optimized by SOS. Thus, the complexity of ACO parameter assignment is greatly reduced. Compared with the ACO algorithm, the hybrid SOS-ACO algorithm finds optimal or near-optimal assembly sequences in fewer iterations. SOS-ACO is also robust in identifying the best assembly sequence in nearly every experiment. Lastly, the performance of SOS-ACO when the given ACO parameters are changed is analyzed through experiments. Experimental results reveal that SOS-ACO has good adaptive capability to various values of given parameters and can achieve competitive solutions.