This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations ...This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.展开更多
为了找到汽轮机在不同负荷下的最优初压,利用改进的共生生物搜索(FSOS)算法和极限学习机(ELM)建立热耗率预测模型,并与BP神经网络、共生生物搜索(SOS)算法优化ELM和FSOS算法优化支持向量机(SVM)等进行了比较。然后,在该模型的基础上用F...为了找到汽轮机在不同负荷下的最优初压,利用改进的共生生物搜索(FSOS)算法和极限学习机(ELM)建立热耗率预测模型,并与BP神经网络、共生生物搜索(SOS)算法优化ELM和FSOS算法优化支持向量机(SVM)等进行了比较。然后,在该模型的基础上用FSOS算法对主蒸汽压力和主蒸汽流量进行优化,使其在各负荷下的热耗率最低。最后,通过优化后的主蒸汽压力拟合出一条最优初压曲线,并与厂家设计的滑压运行曲线进行对比。结果表明:按照最优初压曲线运行,热耗率平均下降约58. 51 k J·(k W·h)^(-1),提高了机组能量的转换效率,对汽轮机经济运行有着显著的效果。展开更多
文摘This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.
文摘为了找到汽轮机在不同负荷下的最优初压,利用改进的共生生物搜索(FSOS)算法和极限学习机(ELM)建立热耗率预测模型,并与BP神经网络、共生生物搜索(SOS)算法优化ELM和FSOS算法优化支持向量机(SVM)等进行了比较。然后,在该模型的基础上用FSOS算法对主蒸汽压力和主蒸汽流量进行优化,使其在各负荷下的热耗率最低。最后,通过优化后的主蒸汽压力拟合出一条最优初压曲线,并与厂家设计的滑压运行曲线进行对比。结果表明:按照最优初压曲线运行,热耗率平均下降约58. 51 k J·(k W·h)^(-1),提高了机组能量的转换效率,对汽轮机经济运行有着显著的效果。