This paper proposes a novel method to quantify the error of a nominal normalized right graph symbol (NRGS) for an errors- in-variables (EIV) system corrupted with bounded noise. Following an identification framewo...This paper proposes a novel method to quantify the error of a nominal normalized right graph symbol (NRGS) for an errors- in-variables (EIV) system corrupted with bounded noise. Following an identification framework for estimation of a perturbation model set, a worst-case v-gap error bound for the estimated nominal NRGS can be first determined from a priori and a posteriori information on the underlying EIV system. Then, an NRGS perturbation model set can be derived from a close relation between the v-gap metric of two models and H∞-norm of their NRGSs' difference. The obtained NRGS perturbation model set paves the way for robust controller design using an H∞ loop-shaping method because it is a standard form of the well-known NCF (normalized coprime factor) perturbation model set. Finally, a numerical simulation is used to demonstrate the effectiveness of the proposed identification method.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61203119,61304153)the Key Program of Tianjin Natural Science Foundation,China(No.14JCZDJC36300)the Tianjin University of Technology and Education funded project(No.RC14-48)
文摘This paper proposes a novel method to quantify the error of a nominal normalized right graph symbol (NRGS) for an errors- in-variables (EIV) system corrupted with bounded noise. Following an identification framework for estimation of a perturbation model set, a worst-case v-gap error bound for the estimated nominal NRGS can be first determined from a priori and a posteriori information on the underlying EIV system. Then, an NRGS perturbation model set can be derived from a close relation between the v-gap metric of two models and H∞-norm of their NRGSs' difference. The obtained NRGS perturbation model set paves the way for robust controller design using an H∞ loop-shaping method because it is a standard form of the well-known NCF (normalized coprime factor) perturbation model set. Finally, a numerical simulation is used to demonstrate the effectiveness of the proposed identification method.