It is of both the theoretical and practical importance to reduce the storage andCPU time of moment methods by utilizing the geometrical and physical features of the scatterer.An unified approach based on the group the...It is of both the theoretical and practical importance to reduce the storage andCPU time of moment methods by utilizing the geometrical and physical features of the scatterer.An unified approach based on the group theory is presented to deal with the EM scattering fromsymmetric and anti-symmetric structures.展开更多
Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight s...Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
In this paper,we first initialize the S-product of tensors to unify the outer product,contractive product,and the inner product of tensors.Then,we introduce the separable symmetry tensors and separable anti-symmetry t...In this paper,we first initialize the S-product of tensors to unify the outer product,contractive product,and the inner product of tensors.Then,we introduce the separable symmetry tensors and separable anti-symmetry tensors,which are defined,respectively,as the sum and the algebraic sum of rank-one tensors generated by the tensor product of some vectors.We offer a class of tensors to achieve the upper bound for rank(A)≤6 for all tensors of size 3×3×3.We also show that each 3×3×3 anti-symmetric tensor is separable.展开更多
Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a one- dimensional periodic plate by using the method of supercell plane-wave expansion. The results show that all t...Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a one- dimensional periodic plate by using the method of supercell plane-wave expansion. The results show that all the bands are pinned in pairs at the Brillouin zone boundary as long as the anti-symmetry remains and acoustic band gaps (ABGs) only appear between certain bands. In order to reveal the relationship between the band pinning and the anti-symmetry, the method of eigenmode analysis is introduced to calculate the displacement fields of different plate structures. Further, the method of harmony response analysis is employed to calculate the reference spectra to verify the accuracy of numerical calculations of acoustic band map, and both the locations and widths of ABGs in the acoustic band map are in good agreement with those of the reference spectra. The investigations show that the pinning effect is very sensitive to the anti-symmetry of periodic plates, and by introducing different types of breakages, more ABGs or narrow pass bands will appear, which is meaningful in band gap engineering.展开更多
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
Efficient Ti-catalyzed reductive coupling methodology was first employed to synthesize the symmetrical bis-donor stilbene, trans-4, 4'-bis[diphenyl amino] stilbene (BDPAS). X-ray diffraction analyses reveal that t...Efficient Ti-catalyzed reductive coupling methodology was first employed to synthesize the symmetrical bis-donor stilbene, trans-4, 4'-bis[diphenyl amino] stilbene (BDPAS). X-ray diffraction analyses reveal that this new crystal belongs to the triclinic crystal system of centro-symmetric P-1 space group. The DBPAS solution, with the linear transmission at wavelength of greater than or equal to 450 nm, possesses large two-photon absorption cross section as high as 39.4x10(-48) cm(4).s/photon resulting in strong two-photon induced blue fluorescence of 460 nm, pumped by 740 nm laser irradiation.展开更多
The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were prop...The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.展开更多
In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the com...In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.展开更多
In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure...In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure of a tropical cyclone,in which m and p are the parameters of the vortex, has been found by the author. And then it has been shown that there is but one 'characteristic radius' for each cyclone with horizontal structure. Two direct analytic solutions for the uniform and non-uniform basic flows in steady situations are presented with rc Results show that the change in the horizontal structure of the tropical cyclone itself will have obvious effect on the cyclone motion, on both its direction and speed. Therefore it must be considered in the research on the tropical cyclone motion.展开更多
A novel C3-symmetrical molecule, 1,3,5-tri(9-ethyl-6-nitrocarbazol-3-yl) benzene(IV), was synthesized and characterized by 1 H NMR, 13 C NMR and UV-vis spectroscopy, elemental analyses and X-ray single crystal diffrac...A novel C3-symmetrical molecule, 1,3,5-tri(9-ethyl-6-nitrocarbazol-3-yl) benzene(IV), was synthesized and characterized by 1 H NMR, 13 C NMR and UV-vis spectroscopy, elemental analyses and X-ray single crystal diffraction analysis. For this complex: C48 H36 N6 O6, Mr = 792.83, triclinic system, space group P1, a = 11.568(6), b = 13.158(7), c = 17.856(10) ?, α = 95.419(9), β = 107.345(8), γ = 114.682(8)o, V = 2281(2) ?3, Z = 2, Dc = 1.154 g/cm3, λ = 0.71073 ?, F(000) = 828, S = 1.083, R = 0.0836 and wR = 0.1926 for 3304 observed reflections with I > 2ζ(I). The compound possesses good thermal stability with the decomposition temperature(Td) of 265 ℃. The absorption and emission spectra show that the compound can emit blue light in CHCl3, and the quantum yield of compound IV in EtOH was 0.66. Furthermore, the electrochemical properties of compound IV were also studied by cyclic voltammetry(CV) method, and the results correspond to the data of theoretical calculation by the Gaussian 09 software.展开更多
In this paper, we establish a differential equation about scalar curvature of conformally flat K-contact manifolds, and prove that a conformally symmetric K-contact manifold is a Riemann manifold with constant curvatu...In this paper, we establish a differential equation about scalar curvature of conformally flat K-contact manifolds, and prove that a conformally symmetric K-contact manifold is a Riemann manifold with constant curvature 1. At the same time, the results on Sasaki manifolds which are given by Miyazaawa and Yamagushi are generalized to K-contact manifolds.展开更多
This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel w...This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width,展开更多
The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation ...The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.展开更多
A novel dinuclear zinc(II) complex [Zn2L(μ-OAc)](PF6)2(CH3OH) has been synthesized from a new symmetrical compartmental ligand HL in which the pendant arms, bearing pyridyl groups, are bridged by 1,3-diaminop...A novel dinuclear zinc(II) complex [Zn2L(μ-OAc)](PF6)2(CH3OH) has been synthesized from a new symmetrical compartmental ligand HL in which the pendant arms, bearing pyridyl groups, are bridged by 1,3-diaminopropan-2-ol. X-ray crystal structure shows that the two zinc atoms reside within the adjacent ligand compartments and are bridged by the endogenous alkoxo-O from ligand and one exogenous carboxylate from acetate with a syn-syn mode. The coordination geometry of two zinc atoms is a distorted trigonal bipyramid with the pyridyl-N atoms and bridging alkoxo-O atom providing the equatorial donor set. Such coordination geometry observed in this complex is similar to that found in the dinuclear unit ofphospholipase C.展开更多
For the generalized Jaynes-Cummings model Hamiltonian which can describe two collectively radiation atoms,we find its supersymmetric structure.Based on supersymmetric quantum mechanics theory,we introduce a supersymme...For the generalized Jaynes-Cummings model Hamiltonian which can describe two collectively radiation atoms,we find its supersymmetric structure.Based on supersymmetric quantum mechanics theory,we introduce a supersymmetric unitary transformation,in which the supersymmetric unitary transformation operator can be constructed by supersymmetric generators of the super-Lie algebra,to diagonalize the Hamiltonian.On doing so,its eigenvalue and eigenstates are obtained.展开更多
With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various...With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.展开更多
As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudo...As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudostructure on which conservation laws are fulfilled (A closed dual form describes a pseudostructure. And a closed exterior form, as it is known, describes a conservative quantity, since the differential of closed form is equal to zero). It has been shown that closed inexact exterior forms, which describe physical structures, are obtained from the equations of mathematical physics. This process proceeds spontaneously under realization of any degrees of freedom of the material medium described. Such a process describes an emergence of physical structures and this is accompanied by an appearance of observed formations such as fluctuations, waves, turbulent pulsations and so on.展开更多
文摘It is of both the theoretical and practical importance to reduce the storage andCPU time of moment methods by utilizing the geometrical and physical features of the scatterer.An unified approach based on the group theory is presented to deal with the EM scattering fromsymmetric and anti-symmetric structures.
基金supported by the National Natural Science Foundation of China(Grants Nos.51978150 and 52050410334)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grants No.SJCX23_0069)the Fundamental Research Funds for the Central Universities.
文摘Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
文摘In this paper,we first initialize the S-product of tensors to unify the outer product,contractive product,and the inner product of tensors.Then,we introduce the separable symmetry tensors and separable anti-symmetry tensors,which are defined,respectively,as the sum and the algebraic sum of rank-one tensors generated by the tensor product of some vectors.We offer a class of tensors to achieve the upper bound for rank(A)≤6 for all tensors of size 3×3×3.We also show that each 3×3×3 anti-symmetric tensor is separable.
基金supported by the National Basic Research Program of China(Grant No.2010CB327803)the National Natural Science Foundation of China(Grant Nos.10874086,10834009,and 10904068)+1 种基金the Science Foundation of the Ministry of Education of China(Grant No.705017)the Fundamental Research Funds for the Central Universities,China(Grant No.1085020401)
文摘Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a one- dimensional periodic plate by using the method of supercell plane-wave expansion. The results show that all the bands are pinned in pairs at the Brillouin zone boundary as long as the anti-symmetry remains and acoustic band gaps (ABGs) only appear between certain bands. In order to reveal the relationship between the band pinning and the anti-symmetry, the method of eigenmode analysis is introduced to calculate the displacement fields of different plate structures. Further, the method of harmony response analysis is employed to calculate the reference spectra to verify the accuracy of numerical calculations of acoustic band map, and both the locations and widths of ABGs in the acoustic band map are in good agreement with those of the reference spectra. The investigations show that the pinning effect is very sensitive to the anti-symmetry of periodic plates, and by introducing different types of breakages, more ABGs or narrow pass bands will appear, which is meaningful in band gap engineering.
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
文摘Efficient Ti-catalyzed reductive coupling methodology was first employed to synthesize the symmetrical bis-donor stilbene, trans-4, 4'-bis[diphenyl amino] stilbene (BDPAS). X-ray diffraction analyses reveal that this new crystal belongs to the triclinic crystal system of centro-symmetric P-1 space group. The DBPAS solution, with the linear transmission at wavelength of greater than or equal to 450 nm, possesses large two-photon absorption cross section as high as 39.4x10(-48) cm(4).s/photon resulting in strong two-photon induced blue fluorescence of 460 nm, pumped by 740 nm laser irradiation.
文摘The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.
文摘In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.
文摘In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure of a tropical cyclone,in which m and p are the parameters of the vortex, has been found by the author. And then it has been shown that there is but one 'characteristic radius' for each cyclone with horizontal structure. Two direct analytic solutions for the uniform and non-uniform basic flows in steady situations are presented with rc Results show that the change in the horizontal structure of the tropical cyclone itself will have obvious effect on the cyclone motion, on both its direction and speed. Therefore it must be considered in the research on the tropical cyclone motion.
基金supported by the Fund for the Soft Science project of Shanxi Province(No.2016042008-1)the National Natural Science Foundation of China(No.21701121)the Natural Science Foundation of Shanxi Province(No.201601D102015 and 201801D121064)
文摘A novel C3-symmetrical molecule, 1,3,5-tri(9-ethyl-6-nitrocarbazol-3-yl) benzene(IV), was synthesized and characterized by 1 H NMR, 13 C NMR and UV-vis spectroscopy, elemental analyses and X-ray single crystal diffraction analysis. For this complex: C48 H36 N6 O6, Mr = 792.83, triclinic system, space group P1, a = 11.568(6), b = 13.158(7), c = 17.856(10) ?, α = 95.419(9), β = 107.345(8), γ = 114.682(8)o, V = 2281(2) ?3, Z = 2, Dc = 1.154 g/cm3, λ = 0.71073 ?, F(000) = 828, S = 1.083, R = 0.0836 and wR = 0.1926 for 3304 observed reflections with I > 2ζ(I). The compound possesses good thermal stability with the decomposition temperature(Td) of 265 ℃. The absorption and emission spectra show that the compound can emit blue light in CHCl3, and the quantum yield of compound IV in EtOH was 0.66. Furthermore, the electrochemical properties of compound IV were also studied by cyclic voltammetry(CV) method, and the results correspond to the data of theoretical calculation by the Gaussian 09 software.
文摘In this paper, we establish a differential equation about scalar curvature of conformally flat K-contact manifolds, and prove that a conformally symmetric K-contact manifold is a Riemann manifold with constant curvature 1. At the same time, the results on Sasaki manifolds which are given by Miyazaawa and Yamagushi are generalized to K-contact manifolds.
文摘This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width,
基金Project supported by the National Natural Science Foundation of China (No.60034010) the Australia Research Council Discovery-Projects Grant (No.DP0210716)
文摘The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.
文摘A novel dinuclear zinc(II) complex [Zn2L(μ-OAc)](PF6)2(CH3OH) has been synthesized from a new symmetrical compartmental ligand HL in which the pendant arms, bearing pyridyl groups, are bridged by 1,3-diaminopropan-2-ol. X-ray crystal structure shows that the two zinc atoms reside within the adjacent ligand compartments and are bridged by the endogenous alkoxo-O from ligand and one exogenous carboxylate from acetate with a syn-syn mode. The coordination geometry of two zinc atoms is a distorted trigonal bipyramid with the pyridyl-N atoms and bridging alkoxo-O atom providing the equatorial donor set. Such coordination geometry observed in this complex is similar to that found in the dinuclear unit ofphospholipase C.
文摘For the generalized Jaynes-Cummings model Hamiltonian which can describe two collectively radiation atoms,we find its supersymmetric structure.Based on supersymmetric quantum mechanics theory,we introduce a supersymmetric unitary transformation,in which the supersymmetric unitary transformation operator can be constructed by supersymmetric generators of the super-Lie algebra,to diagonalize the Hamiltonian.On doing so,its eigenvalue and eigenstates are obtained.
文摘With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.
文摘As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudostructure on which conservation laws are fulfilled (A closed dual form describes a pseudostructure. And a closed exterior form, as it is known, describes a conservative quantity, since the differential of closed form is equal to zero). It has been shown that closed inexact exterior forms, which describe physical structures, are obtained from the equations of mathematical physics. This process proceeds spontaneously under realization of any degrees of freedom of the material medium described. Such a process describes an emergence of physical structures and this is accompanied by an appearance of observed formations such as fluctuations, waves, turbulent pulsations and so on.