In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case...In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.展开更多
A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric.The homogeneous manifold G/H is called Riemannian equigeodesic,if ...A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric.The homogeneous manifold G/H is called Riemannian equigeodesic,if for any x∈G/H and any nonzero y∈Tx(G/H),there exists a Riemannian equigeodesic c(t) with c(0)=x and ■(0)=y.These two notions can be naturally transferred to the Finsler setting,which provides the definitions for Finsler equigeodesics and Finsler equigeodesic spaces.We prove two classification theorems for Riemannian equigeodesic spaces and Finsler equigeodesic spaces,respectively.Firstly,a homogeneous manifold G/H with a connected simply connected quasi compact G and a connected H is Riemannian equigeodesic if and only if it can be decomposed as a product of Euclidean factors and compact strongly isotropy irreducible factors.Secondly,a homogeneous manifold G/H with a compact semisimple G is Finsler equigeodesic if and only if it can be locally decomposed as a product,in which each factor is Spin(7)/G2,G2/SU (3) or a symmetric space of compact type.These results imply that the symmetric space and the strongly isotropy irreducible space of compact type can be interpreted by equigeodesic properties.As an application,we classify the homogeneous manifold G/H with a compact semisimple G such that all the G-invariant Finsler metrics on G/H are Berwald.It suggests a new project in homogeneous Finsler geometry,i.e.,to systematically study the homogeneous manifold G/H on which all the G-invariant Finsler metrics satisfy a certain geometric property.展开更多
H-tensor is a new developed concept which plays an important role in tensor analysis and computing. In this paper, we explore the properties of H-tensors and establish some new criteria for strong H-tensors. In partic...H-tensor is a new developed concept which plays an important role in tensor analysis and computing. In this paper, we explore the properties of H-tensors and establish some new criteria for strong H-tensors. In particular, based on the principal subtensor, we provide a new necessary and sufficient condition of strong H-tensors, and based on a type of generalized diagonal product dominance, we establish some new criteria for identifying strong H-tensors. The results obtained in this paper extend the corresponding conclusions for strong H-matrices and improve the existing results for strong H-tensors.展开更多
We prove the two existence results of the radially symmetric strong solutions to the Navier- Stokes-Poisson equations for isentropic compressible fluids. The important point in this paper is that the initial density i...We prove the two existence results of the radially symmetric strong solutions to the Navier- Stokes-Poisson equations for isentropic compressible fluids. The important point in this paper is that the initial density is vacuum. It is different from weak solutions. Now we need some compatibility condition.展开更多
基金supported by NNSFC(11101145),supported by NNSFC(11326140 and11501323)China Postdoctoral Science Foundation(2012M520360)+1 种基金Doctoral Foundation of North China University of Water Sources and Electric Power(201032),Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Doctoral Starting up Foundation of Quzhou University(BSYJ201314 and XNZQN201313)
文摘In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.
基金supported by National Natural Science Foundation of China (Grant Nos.12131012, 12001007 and 11821101)Beijing Natural Science Foundation (Grant No. 1222003)Natural Science Foundation of Anhui Province (Grant No. 1908085QA03)。
文摘A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric.The homogeneous manifold G/H is called Riemannian equigeodesic,if for any x∈G/H and any nonzero y∈Tx(G/H),there exists a Riemannian equigeodesic c(t) with c(0)=x and ■(0)=y.These two notions can be naturally transferred to the Finsler setting,which provides the definitions for Finsler equigeodesics and Finsler equigeodesic spaces.We prove two classification theorems for Riemannian equigeodesic spaces and Finsler equigeodesic spaces,respectively.Firstly,a homogeneous manifold G/H with a connected simply connected quasi compact G and a connected H is Riemannian equigeodesic if and only if it can be decomposed as a product of Euclidean factors and compact strongly isotropy irreducible factors.Secondly,a homogeneous manifold G/H with a compact semisimple G is Finsler equigeodesic if and only if it can be locally decomposed as a product,in which each factor is Spin(7)/G2,G2/SU (3) or a symmetric space of compact type.These results imply that the symmetric space and the strongly isotropy irreducible space of compact type can be interpreted by equigeodesic properties.As an application,we classify the homogeneous manifold G/H with a compact semisimple G such that all the G-invariant Finsler metrics on G/H are Berwald.It suggests a new project in homogeneous Finsler geometry,i.e.,to systematically study the homogeneous manifold G/H on which all the G-invariant Finsler metrics satisfy a certain geometric property.
基金Acknowledgements The authors would like to give their sincere thanks to the anonymous referees for their valuable suggestions and helpful comments, which help improve the presen- tation of the paper. This work was supported by the National Natural Science Foundation of China (Grant No. 61572283).
文摘H-tensor is a new developed concept which plays an important role in tensor analysis and computing. In this paper, we explore the properties of H-tensors and establish some new criteria for strong H-tensors. In particular, based on the principal subtensor, we provide a new necessary and sufficient condition of strong H-tensors, and based on a type of generalized diagonal product dominance, we establish some new criteria for identifying strong H-tensors. The results obtained in this paper extend the corresponding conclusions for strong H-matrices and improve the existing results for strong H-tensors.
基金Supported by NSF of China (No.10531020)the Program of 985 Innovation Engineering on Information in Xiamen University(2004-2007)NCETXMU
文摘We prove the two existence results of the radially symmetric strong solutions to the Navier- Stokes-Poisson equations for isentropic compressible fluids. The important point in this paper is that the initial density is vacuum. It is different from weak solutions. Now we need some compatibility condition.