The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addit...The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addition to two different modes coupling,a nonuniform distribution of gain and loss leads to an offset from the original propagation constants,including both real and imaginary parts,resulting in the absence of EP.These behaviors are examined by the general coupled-mode theory from the first principle of the Maxwell equations,which yields results that are more accurate than those from the classical coupled-mode theory.Numerical verification via the finite element method is provided.In the end,we present an approach to achieve lossless propagation in a geometrically symmetric waveguide array.展开更多
We proposed a new saccharides sensor developed by symmetrical optical waveguide(SOW)-based surface plasmon resonance(SPR).This unique MgF_(2)/Au/MgF_(2)/Analyte film structure results in longer suface plasmon wave(SPW...We proposed a new saccharides sensor developed by symmetrical optical waveguide(SOW)-based surface plasmon resonance(SPR).This unique MgF_(2)/Au/MgF_(2)/Analyte film structure results in longer suface plasmon wave(SPW)propagation lengths and depths,leading to an increment of resolution.In this paper,we managed to decorate the dielectric interface(MgF_(2) layer)by depositing a thin polydopamine film as surface adherent that provides a platform for secondary reactions with the probe molecule.3-Aminophenylboronic acid(3-PBA)is chosen to be the saccharides sense probe molecule in the present work.The aqueous huumnor of Diabetes and Cataract patient whose blood glucose level is normal are analyzed and the results dermonstrated that this sensor shows great potential in monitoring the blood siugar and can be adapted in the field of biological monitoring in the future.展开更多
This paper reports that Goos-Hǎnchen (GH) shifts occurring on a symmetrical metal-cladding waveguide are experimentally identified. It was found that there exists a critical thickness of the upper metal layer, hcr,...This paper reports that Goos-Hǎnchen (GH) shifts occurring on a symmetrical metal-cladding waveguide are experimentally identified. It was found that there exists a critical thickness of the upper metal layer, hcr, above which negative shift is observed and, reversely, positive shift occurs. Both positive and negative GH shifts near the critical thickness do not vary dramatically and can achieve a maximum on the submillimeter scale, which is different from simulated results using the stationary-phase method. It also shows that this critical thickness, hcr, can be obtained at the position for zero reflectivity by setting the intrinsic damping to be the same as the radiative damping. The GH effects observed near the critical thickness are produced by extreme distortion of the reflected beam profiles, which limits the amplitude of the GH shift and, further, the sensitivity of the GH optical sensor based on the symmetrical metal-cladding waveguide.展开更多
We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding la...We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide.展开更多
We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton(SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding...We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton(SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding.With Maxwell's equations and Maxwell stress tensor,we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides.The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters.Importantly,an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation.These special optical properties will open the door for potential optomechanical applications,such as optical tweezers and actuators.展开更多
An optical platform for sensitive detection of chemical vapor based on a polymer-coated symmetrical metal-cladding waveguide is proposed.The diffusion of chemical vapor usually leads to a combinational effect in the p...An optical platform for sensitive detection of chemical vapor based on a polymer-coated symmetrical metal-cladding waveguide is proposed.The diffusion of chemical vapor usually leads to a combinational effect in the polymer layer,i.e.,swelling and refractive index change.Owing to the high sensitivity of ultrahigh-order modes,the vapor-induced effect will give rise to a dramatic variation of the reflected light intensity.For proof-of-concept,a good linearity and a low detection limit of toluene and benzene are experimentally demonstrated with an amorphous Teflon AF polymer layer.展开更多
An In P-based monolithically integrated few-mode transmitter aiming at the combination of wavelength division multiplexing(WDM) and mode division multiplexing(MDM) technologies is proposed. The core elements of th...An In P-based monolithically integrated few-mode transmitter aiming at the combination of wavelength division multiplexing(WDM) and mode division multiplexing(MDM) technologies is proposed. The core elements of the proposed transmitter are mode converters and a wavelength-mode division multiplexer that are all based on multimode interference(MMI) couplers. Simulations show that the wavelength-mode division multiplexer has a large fabrication tolerance of 30 and 0.5 μm for the length and the width of the device, respectively.A low loss below 0.26 dB for the passive parts of the transmitter is obtained in the whole C-band wavelength range.展开更多
基金National Natural Science Foundation of China(NSFC)(11274083,61405067)Guandong Natural Science Foundation(2015A030313748)Shenzhen Municipal Science and Technology Plan(JCYJ20150513151706573)
文摘The exceptional point(EP)is one of the typical properties of parity–time-symmetric systems,arising from modes coupling with identical resonant frequencies or propagation constants in optics.Here we show that in addition to two different modes coupling,a nonuniform distribution of gain and loss leads to an offset from the original propagation constants,including both real and imaginary parts,resulting in the absence of EP.These behaviors are examined by the general coupled-mode theory from the first principle of the Maxwell equations,which yields results that are more accurate than those from the classical coupled-mode theory.Numerical verification via the finite element method is provided.In the end,we present an approach to achieve lossless propagation in a geometrically symmetric waveguide array.
基金support from NSFC China (grants 61275188,61378089 and 81171375)the key project of Guangdong province (2012A080203008)+1 种基金the Basic Research Program of Shenzhen City (JC201105201121A)State Key Laboratory Open Foundation Issue,China (grant 12K05ESPCT).
文摘We proposed a new saccharides sensor developed by symmetrical optical waveguide(SOW)-based surface plasmon resonance(SPR).This unique MgF_(2)/Au/MgF_(2)/Analyte film structure results in longer suface plasmon wave(SPW)propagation lengths and depths,leading to an increment of resolution.In this paper,we managed to decorate the dielectric interface(MgF_(2) layer)by depositing a thin polydopamine film as surface adherent that provides a platform for secondary reactions with the probe molecule.3-Aminophenylboronic acid(3-PBA)is chosen to be the saccharides sense probe molecule in the present work.The aqueous huumnor of Diabetes and Cataract patient whose blood glucose level is normal are analyzed and the results dermonstrated that this sensor shows great potential in monitoring the blood siugar and can be adapted in the field of biological monitoring in the future.
基金Project supported by the Research Fund for Selecting and Training Excellent Young Teachers in Universities of Shanghai, Shanghai Municipal Education Commission (Grant No slg08006)"Chen Guang" project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (Grant No 09CG49)+2 种基金Dawn Project of Education Committee of Shanghai and Shanghai Education Development Foundation (Grant No 08SG48)Innovation Program of Shanghai Municipal Education Commission (Grant No 09YZ221)the Program from Shanghai Committee of Science and Technology, China (Grant Nos 07DZ22026 and 08ZR1415400)
文摘This paper reports that Goos-Hǎnchen (GH) shifts occurring on a symmetrical metal-cladding waveguide are experimentally identified. It was found that there exists a critical thickness of the upper metal layer, hcr, above which negative shift is observed and, reversely, positive shift occurs. Both positive and negative GH shifts near the critical thickness do not vary dramatically and can achieve a maximum on the submillimeter scale, which is different from simulated results using the stationary-phase method. It also shows that this critical thickness, hcr, can be obtained at the position for zero reflectivity by setting the intrinsic damping to be the same as the radiative damping. The GH effects observed near the critical thickness are produced by extreme distortion of the reflected beam profiles, which limits the amplitude of the GH shift and, further, the sensitivity of the GH optical sensor based on the symmetrical metal-cladding waveguide.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11274091 and 11274092)the Fundamental Research Funds for the Central Universities of Hohai University, China (Grant No. 2011B11014)
文摘We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474106)the Natural Science Foundation of Guangdong Province,China(Grant No.2016A030313439)
文摘We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton(SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding.With Maxwell's equations and Maxwell stress tensor,we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides.The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters.Importantly,an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation.These special optical properties will open the door for potential optomechanical applications,such as optical tweezers and actuators.
基金supported by the National Natural Science Foundation of China (Grant No. 61168002)the Opening Foundation of the State Key Laboratory of Advanced Optical Communication Systems and Networks(Grant No. 2011GZKF031105)
文摘An optical platform for sensitive detection of chemical vapor based on a polymer-coated symmetrical metal-cladding waveguide is proposed.The diffusion of chemical vapor usually leads to a combinational effect in the polymer layer,i.e.,swelling and refractive index change.Owing to the high sensitivity of ultrahigh-order modes,the vapor-induced effect will give rise to a dramatic variation of the reflected light intensity.For proof-of-concept,a good linearity and a low detection limit of toluene and benzene are experimentally demonstrated with an amorphous Teflon AF polymer layer.
基金supported by the National 973 Program of China(No.2014CB340102)the National Nature Science Foundation of China(Nos.61320106013 and61271066)
文摘An In P-based monolithically integrated few-mode transmitter aiming at the combination of wavelength division multiplexing(WDM) and mode division multiplexing(MDM) technologies is proposed. The core elements of the proposed transmitter are mode converters and a wavelength-mode division multiplexer that are all based on multimode interference(MMI) couplers. Simulations show that the wavelength-mode division multiplexer has a large fabrication tolerance of 30 and 0.5 μm for the length and the width of the device, respectively.A low loss below 0.26 dB for the passive parts of the transmitter is obtained in the whole C-band wavelength range.