The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha...Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.展开更多
The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s...The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.展开更多
The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation ...The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.展开更多
In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the com...In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.展开更多
The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were prop...The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.展开更多
In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure...In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure of a tropical cyclone,in which m and p are the parameters of the vortex, has been found by the author. And then it has been shown that there is but one 'characteristic radius' for each cyclone with horizontal structure. Two direct analytic solutions for the uniform and non-uniform basic flows in steady situations are presented with rc Results show that the change in the horizontal structure of the tropical cyclone itself will have obvious effect on the cyclone motion, on both its direction and speed. Therefore it must be considered in the research on the tropical cyclone motion.展开更多
The title Mn(Ⅱ) coordination polymer,poly{[heptaaqua-(μ4-bi-phenyl-3,3?,5,5?-tetracarboxylate)-bimanganese(Ⅱ)] pentahydrate},[Mn_2(bpta)(H_2O)_7]_n·5n H_2O(I),is crystallized from a mixture of bi...The title Mn(Ⅱ) coordination polymer,poly{[heptaaqua-(μ4-bi-phenyl-3,3?,5,5?-tetracarboxylate)-bimanganese(Ⅱ)] pentahydrate},[Mn_2(bpta)(H_2O)_7]_n·5n H_2O(I),is crystallized from a mixture of biphenyl-3,3?,5,5?-tetracarboxylic acid(H_4bpta) and MnCl_2·4H_2O in waterethanol under room temperature. Its asymmetric unit consists of one and two halves of crystallographically independent Mn(Ⅱ) cations,one fully deprotonated H4 bpta ligand,seven coordinated water molecules and five solvent water as guest molecules. In I,each Mn(Ⅱ) atom is octahedrally coordinated by six oxygen atoms from bpta^(4-) anions and coordinated water molecules. In the Mn(Ⅱ) cations,one half Mn(Ⅱ) ion of them located at a 2-fold axis generating a trinuclear [Mn_3(H_2O)_2(RCOO)_2] linker by μ1,1-O(water) and μ1,3-O,O?(carboxylate) bridges and another half Mn(Ⅱ) ion with an inversion is a mononuclear linker. These neighbouring trinuclear and mononuclear Mn(Ⅱ) cations are linked together by biphenyl-3,3?,5,5?-tetracarboxylates to form a three-dimensional framework with a(42.84) topology of a(4,4)-connected net,in which the positions of the trinuclear [Mn_3(H_2O)_2(R-COO)_2] linker as a 4-connector linking four bpta^(4-) ligands in I reproduce an eagle-shaped arrangement. The polymeric structure exhibits a water channel with an accessible void of 797.1 ?~3,amounting to 15.7% of the total unit-cell volume. Each of the cavities in the network is occupied by solvent water molecules.展开更多
The IEEE 802. 16 standard specifies the air interface of wireless metropolitan area network (WMAN), and aims to provide wireless broadband access for integrated voice and video services. This paper presents the effi...The IEEE 802. 16 standard specifies the air interface of wireless metropolitan area network (WMAN), and aims to provide wireless broadband access for integrated voice and video services. This paper presents the efficient design and implementation of fast Frouier transform (FFT) and inverse fast Frouier transform (IFFT) for the application in IEEE 802. 16d orthogoual frequency division multiplexing (OFDM) system. In this design, a novel pipeline structure for the branch of butterfly unit (BU) is proposed, which can improve the processing symbol rate by adding the number of branch flexibly. The symmetrical ping-pang structure of random access memory (RAM) is performed to increase the system throughput. Simulation results reveal that only with 1 branch of BU, the proposed FFF/IFFT design can almost achieve the maximum bandwidth requirement of IEEE 802. 16d OFDM system. And this design has been verified by FPGA and successfully implemented in the prototype of WiMAX transceiver.展开更多
A symmetrical Fe2O3/BaCO3 hexagonal cone structure having a height of 10 um and an edge length of -4um is reported, obtained using a common solvothermal process and a mirror growth process. Focused ion beam and high-r...A symmetrical Fe2O3/BaCO3 hexagonal cone structure having a height of 10 um and an edge length of -4um is reported, obtained using a common solvothermal process and a mirror growth process. Focused ion beam and high-resolution transmission electron microscopy techniques revealed that α-Fe2O3 was the single crystal feature present. Ba ions contributed to the formation of symmetrical structures exhibited in the final composites. Subsequently, porous magnetic symmetric hexagonal cone structures were used to study the observed intense electromagnetic wave interference. Electromagnetic absorption performance studies at 2-18 GHz indicated stronger attenuation electromagnetic wave ability as compared to other shapes such as spindles, spheres, cubes, and rods. The maximum absorption frequency bandwidth was at 7.2 GHz with a coating thickness d = 1.5 mm. Special structures and the absence of BaCO3 likely played a vital role in the excellent electromagnetic absorption properties described in this research.展开更多
The safety of human-robot interaction is an essential requirement for designing collaborative robotics.Thus,this paper aims to design a novel variable stiffiiess actuator(VSA)that can provide safer physical human-robo...The safety of human-robot interaction is an essential requirement for designing collaborative robotics.Thus,this paper aims to design a novel variable stiffiiess actuator(VSA)that can provide safer physical human-robot interaction for collaborative robotics.VS A follows the idea of modular design,mainly including a variable stiffiiess module and a drive module.The variable stiffiiess module transmits the motion from the drive module in a roundabout maimer,making the modularization of VS A possible.As the key component of the variable stiffiiess module,a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously,which can eliminate the additional bending moment caused by the asymmetric structure.The design of the doubledeck grooves in the lever allows the pivot to move freely in the groove,avoiding the geometric constraint between the parts.Consequently,the VSA stiffiiess can change from zero to infinity as the pivot moves from one end of the groove to the other.To facilitate building a manipulator in the future,an expandable electrical system with a distributed structure is also proposed.Stiffiiess calibration and control experiments are performed to evaluate the physical performance of the designed VSA.Experiment results show that the VSA stiffiiess is close to the theoretical design stiffness.Furthermore,the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffiiess regulation and a good performance for position tracking.展开更多
With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games an...With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.展开更多
One type of covariance structure is known as blocked compound symmetry.Recently,Roy et al.(J Multivar Anal 144:81–90,2016)showed that,assuming this covariance structure,unbiased estimators are optimal under normality...One type of covariance structure is known as blocked compound symmetry.Recently,Roy et al.(J Multivar Anal 144:81–90,2016)showed that,assuming this covariance structure,unbiased estimators are optimal under normality and described hypothesis testing for independence as an open problem.In this paper,we derive the distributions of unbiased estimators and consider hypothesis testing for independence.Representative test statistics such as the likelihood ratio criterion,Waldstatistic,Rao’s score statistic,and gradient statistic are derived,and we evaluate the accuracy of the test using these statistics through numerical simulations.The power of the Wald test is the largest when the dimension is high,and the power of the likelihood ratio test is the largest when the dimension is low.展开更多
In this paper,a novel,separable two-degrees-of-freedom stage with high-precision motion and resolution is proposed for the application of vibration-assisted micromilling.A separable design was realized on the basis of...In this paper,a novel,separable two-degrees-of-freedom stage with high-precision motion and resolution is proposed for the application of vibration-assisted micromilling.A separable design was realized on the basis of the detachable structure of the platform.Flexible stages with different dimensions and types can be utilized in the devices.A circular-fillet hinge is selected as the flexible unit with a parallel structure to realize output decoupling and reduce the coupling error between the two vibration directions.Analytical modeling is conducted to explore the static and dynamic characteristics of the stage.Results reveal a good agreement with the finite element simulation result.A series of experiments were conducted to assess the static and dynamic performances of the flexible stage,encompassing tests such as amplitude response,motion trajectory,and coupling trajectory.The results of these tests revealed that the designed vibration-assisted system exhibits precise movement capabilities.展开更多
This paper presents a design of an articulated lower limb traction device(ALLTD) with joint torque generators for a cable-driven parallel rehabilitation robotic system(CDPRRS). An earlier version of the ALLTD uses a r...This paper presents a design of an articulated lower limb traction device(ALLTD) with joint torque generators for a cable-driven parallel rehabilitation robotic system(CDPRRS). An earlier version of the ALLTD uses a rigid link to model the lower limbs of a patient. This paper extends this scenario to include articulations in the lower limbs and analyzes the resulting two-link mechanism. Due to the force-displacement coupled structure, the inverse and forward kinematics of the ALLTD model are analyzed in combination with the requirement for static force balance. Examples using the limb parameters of Chinese adults are provided to show the efficacy of our model. The workspaces and cable tensions of the model indicate that the ALLTD could satisfy the rehabilitation training needs of patients with various lengths of lower limbs.展开更多
Gallium nitride (GaN) high electron mobility transistor (HEMT) with symmetrical structure as a control device is discussed in this paper. The equivalent circuit model is proposed on the basis of physical and elect...Gallium nitride (GaN) high electron mobility transistor (HEMT) with symmetrical structure as a control device is discussed in this paper. The equivalent circuit model is proposed on the basis of physical and electrical properties of the GaN HEMT device. A transistor with 0.5 μm gate length and 6 x 125 gm gate width is fabricated to verify the model, which can be treated as a single pole single throw (SPST) switch due to the ON state and OFF state. The measurement results show a lzood agreement with the simulation results, which demonstrates the effectiveness of the proposed model.展开更多
To demonstrate the existence of singularparity-time symmetry(PT-symmetry)broken point inoptics system,we designed a one-dimensional PT symmetricstructure including N unit-cell with loss and gainmaterials in half.We pe...To demonstrate the existence of singularparity-time symmetry(PT-symmetry)broken point inoptics system,we designed a one-dimensional PT symmetricstructure including N unit-cell with loss and gainmaterials in half.We performed an analytical deduction toobtain the transmittance and reflectance of the structurebasing on Maxwell’s equations.We found that with theexact structure unit-cell number and the imaginary part ofrefraction index,the transmittance and reflectance are bothclose to infinite.Such strict condition is called the singularpoint in this study.At the singular point position,both thetransmission and reflection are direction-independent.Away from the singular point,the transmittance andreflectance become finite.In light of classical wave optics,the single unit and total structure both become theresonance units.The infinite transmittance and reflectanceresult from the resonance matching of single unit and totalstructure.In light of quantum theory,the singular pointcorresponds to the single eigenvalue of electromagneticscattering matrix.The infinite transmittance and reflectancemean a huge energy transformation from pumpingsource to light waves.Numerical calculation and softwaresimulation both demonstrate the result.展开更多
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.21975127,22105102,and 22135003)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20210074)the Fundamental Research Funds for the Central Universities(Grant No.30921011204)。
文摘Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.
基金financial support from the Natural Science Foundation of Guizhou Province (Grant No. ZK 2024-087)Natural Science Foundation of China (no. 22005071)。
文摘The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.
基金Project supported by the National Natural Science Foundation of China (No.60034010) the Australia Research Council Discovery-Projects Grant (No.DP0210716)
文摘The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.
文摘In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.
文摘The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.
文摘In this paper, using Holland's method, the effect of the horizontal structure of tropical cyclones on their motion is investigated. The 'characteristic radius', r0 characterized as the horizontal structure of a tropical cyclone,in which m and p are the parameters of the vortex, has been found by the author. And then it has been shown that there is but one 'characteristic radius' for each cyclone with horizontal structure. Two direct analytic solutions for the uniform and non-uniform basic flows in steady situations are presented with rc Results show that the change in the horizontal structure of the tropical cyclone itself will have obvious effect on the cyclone motion, on both its direction and speed. Therefore it must be considered in the research on the tropical cyclone motion.
基金supported by the National Natural Science Foundation of China(No.21571118)
文摘The title Mn(Ⅱ) coordination polymer,poly{[heptaaqua-(μ4-bi-phenyl-3,3?,5,5?-tetracarboxylate)-bimanganese(Ⅱ)] pentahydrate},[Mn_2(bpta)(H_2O)_7]_n·5n H_2O(I),is crystallized from a mixture of biphenyl-3,3?,5,5?-tetracarboxylic acid(H_4bpta) and MnCl_2·4H_2O in waterethanol under room temperature. Its asymmetric unit consists of one and two halves of crystallographically independent Mn(Ⅱ) cations,one fully deprotonated H4 bpta ligand,seven coordinated water molecules and five solvent water as guest molecules. In I,each Mn(Ⅱ) atom is octahedrally coordinated by six oxygen atoms from bpta^(4-) anions and coordinated water molecules. In the Mn(Ⅱ) cations,one half Mn(Ⅱ) ion of them located at a 2-fold axis generating a trinuclear [Mn_3(H_2O)_2(RCOO)_2] linker by μ1,1-O(water) and μ1,3-O,O?(carboxylate) bridges and another half Mn(Ⅱ) ion with an inversion is a mononuclear linker. These neighbouring trinuclear and mononuclear Mn(Ⅱ) cations are linked together by biphenyl-3,3?,5,5?-tetracarboxylates to form a three-dimensional framework with a(42.84) topology of a(4,4)-connected net,in which the positions of the trinuclear [Mn_3(H_2O)_2(R-COO)_2] linker as a 4-connector linking four bpta^(4-) ligands in I reproduce an eagle-shaped arrangement. The polymeric structure exhibits a water channel with an accessible void of 797.1 ?~3,amounting to 15.7% of the total unit-cell volume. Each of the cavities in the network is occupied by solvent water molecules.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60425413)
文摘The IEEE 802. 16 standard specifies the air interface of wireless metropolitan area network (WMAN), and aims to provide wireless broadband access for integrated voice and video services. This paper presents the efficient design and implementation of fast Frouier transform (FFT) and inverse fast Frouier transform (IFFT) for the application in IEEE 802. 16d orthogoual frequency division multiplexing (OFDM) system. In this design, a novel pipeline structure for the branch of butterfly unit (BU) is proposed, which can improve the processing symbol rate by adding the number of branch flexibly. The symmetrical ping-pang structure of random access memory (RAM) is performed to increase the system throughput. Simulation results reveal that only with 1 branch of BU, the proposed FFF/IFFT design can almost achieve the maximum bandwidth requirement of IEEE 802. 16d OFDM system. And this design has been verified by FPGA and successfully implemented in the prototype of WiMAX transceiver.
文摘A symmetrical Fe2O3/BaCO3 hexagonal cone structure having a height of 10 um and an edge length of -4um is reported, obtained using a common solvothermal process and a mirror growth process. Focused ion beam and high-resolution transmission electron microscopy techniques revealed that α-Fe2O3 was the single crystal feature present. Ba ions contributed to the formation of symmetrical structures exhibited in the final composites. Subsequently, porous magnetic symmetric hexagonal cone structures were used to study the observed intense electromagnetic wave interference. Electromagnetic absorption performance studies at 2-18 GHz indicated stronger attenuation electromagnetic wave ability as compared to other shapes such as spindles, spheres, cubes, and rods. The maximum absorption frequency bandwidth was at 7.2 GHz with a coating thickness d = 1.5 mm. Special structures and the absence of BaCO3 likely played a vital role in the excellent electromagnetic absorption properties described in this research.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFB1300400)the National Natural Science Foundation of China(Grant No.51805107).
文摘The safety of human-robot interaction is an essential requirement for designing collaborative robotics.Thus,this paper aims to design a novel variable stiffiiess actuator(VSA)that can provide safer physical human-robot interaction for collaborative robotics.VS A follows the idea of modular design,mainly including a variable stiffiiess module and a drive module.The variable stiffiiess module transmits the motion from the drive module in a roundabout maimer,making the modularization of VS A possible.As the key component of the variable stiffiiess module,a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously,which can eliminate the additional bending moment caused by the asymmetric structure.The design of the doubledeck grooves in the lever allows the pivot to move freely in the groove,avoiding the geometric constraint between the parts.Consequently,the VSA stiffiiess can change from zero to infinity as the pivot moves from one end of the groove to the other.To facilitate building a manipulator in the future,an expandable electrical system with a distributed structure is also proposed.Stiffiiess calibration and control experiments are performed to evaluate the physical performance of the designed VSA.Experiment results show that the VSA stiffiiess is close to the theoretical design stiffness.Furthermore,the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffiiess regulation and a good performance for position tracking.
基金supported by the National Natural Science Foundation of China under Grant Nos.71201089,71201110,71271217,and 71271029the Natural Science Foundation Youth Project of Shandong Province,China under Grant No.ZR2012GQ005+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20111101110036the Program for New Century Excellent Talents in University of China under Grant No.NCET-12-0541
文摘With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.
文摘One type of covariance structure is known as blocked compound symmetry.Recently,Roy et al.(J Multivar Anal 144:81–90,2016)showed that,assuming this covariance structure,unbiased estimators are optimal under normality and described hypothesis testing for independence as an open problem.In this paper,we derive the distributions of unbiased estimators and consider hypothesis testing for independence.Representative test statistics such as the likelihood ratio criterion,Waldstatistic,Rao’s score statistic,and gradient statistic are derived,and we evaluate the accuracy of the test using these statistics through numerical simulations.The power of the Wald test is the largest when the dimension is high,and the power of the likelihood ratio test is the largest when the dimension is low.
基金This research was supported by Program of Tianjin Science and Technology(No.21ZXJBGX00020)the National Natural Science Foundation of China(Nos.51875404,52175275).
文摘In this paper,a novel,separable two-degrees-of-freedom stage with high-precision motion and resolution is proposed for the application of vibration-assisted micromilling.A separable design was realized on the basis of the detachable structure of the platform.Flexible stages with different dimensions and types can be utilized in the devices.A circular-fillet hinge is selected as the flexible unit with a parallel structure to realize output decoupling and reduce the coupling error between the two vibration directions.Analytical modeling is conducted to explore the static and dynamic characteristics of the stage.Results reveal a good agreement with the finite element simulation result.A series of experiments were conducted to assess the static and dynamic performances of the flexible stage,encompassing tests such as amplitude response,motion trajectory,and coupling trajectory.The results of these tests revealed that the designed vibration-assisted system exhibits precise movement capabilities.
基金the National Natural Science Foundation of China(Grant Nos.91748109 and 51925502)China Scholarship Council。
文摘This paper presents a design of an articulated lower limb traction device(ALLTD) with joint torque generators for a cable-driven parallel rehabilitation robotic system(CDPRRS). An earlier version of the ALLTD uses a rigid link to model the lower limbs of a patient. This paper extends this scenario to include articulations in the lower limbs and analyzes the resulting two-link mechanism. Due to the force-displacement coupled structure, the inverse and forward kinematics of the ALLTD model are analyzed in combination with the requirement for static force balance. Examples using the limb parameters of Chinese adults are provided to show the efficacy of our model. The workspaces and cable tensions of the model indicate that the ALLTD could satisfy the rehabilitation training needs of patients with various lengths of lower limbs.
基金supported by the National Natural Science Foundation of China (61574108, 61574112, 61504099)the Natural Science Basic Research Plan in Shaanxi Province of China (605119425012)
文摘Gallium nitride (GaN) high electron mobility transistor (HEMT) with symmetrical structure as a control device is discussed in this paper. The equivalent circuit model is proposed on the basis of physical and electrical properties of the GaN HEMT device. A transistor with 0.5 μm gate length and 6 x 125 gm gate width is fabricated to verify the model, which can be treated as a single pole single throw (SPST) switch due to the ON state and OFF state. The measurement results show a lzood agreement with the simulation results, which demonstrates the effectiveness of the proposed model.
文摘To demonstrate the existence of singularparity-time symmetry(PT-symmetry)broken point inoptics system,we designed a one-dimensional PT symmetricstructure including N unit-cell with loss and gainmaterials in half.We performed an analytical deduction toobtain the transmittance and reflectance of the structurebasing on Maxwell’s equations.We found that with theexact structure unit-cell number and the imaginary part ofrefraction index,the transmittance and reflectance are bothclose to infinite.Such strict condition is called the singularpoint in this study.At the singular point position,both thetransmission and reflection are direction-independent.Away from the singular point,the transmittance andreflectance become finite.In light of classical wave optics,the single unit and total structure both become theresonance units.The infinite transmittance and reflectanceresult from the resonance matching of single unit and totalstructure.In light of quantum theory,the singular pointcorresponds to the single eigenvalue of electromagneticscattering matrix.The infinite transmittance and reflectancemean a huge energy transformation from pumpingsource to light waves.Numerical calculation and softwaresimulation both demonstrate the result.