A new method for approximation of conic section by quartic B′ezier curve is presented, based on the quartic B′ezier approximation of circular arcs. Here we give an upper bound of the Hausdorff distance between the c...A new method for approximation of conic section by quartic B′ezier curve is presented, based on the quartic B′ezier approximation of circular arcs. Here we give an upper bound of the Hausdorff distance between the conic section and the approximation curve, and show that the error bounds have the approximation order of eight. Furthermore, our method yields quartic G2 continuous spline approximation of conic section when using the subdivision scheme,and the effectiveness of this method is demonstrated by some numerical examples.展开更多
基金Supported by the NSF of China(11101230 and 11371209)
文摘A new method for approximation of conic section by quartic B′ezier curve is presented, based on the quartic B′ezier approximation of circular arcs. Here we give an upper bound of the Hausdorff distance between the conic section and the approximation curve, and show that the error bounds have the approximation order of eight. Furthermore, our method yields quartic G2 continuous spline approximation of conic section when using the subdivision scheme,and the effectiveness of this method is demonstrated by some numerical examples.