We investigate the nonlinear modes in a rotating double well potential with 79T symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably ...We investigate the nonlinear modes in a rotating double well potential with 79T symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably exist by given certain parameter settings. The multistable area between these modes are studied numerically and the bistable and tristable areas are delimited. With different input trial wavefunctions, five types of solitary wave modes are identified. We found that the rotating of the potential can significantly affect the power flow of the fundamental harmonic mode, whose effect is absent for the other modes.展开更多
We present an analytical solution of two solitons of Bose-Einstein condensates trapped in a double-barrier potential by using a multiple-scale method. In the linear case, we find that the stable spots of the soliton f...We present an analytical solution of two solitons of Bose-Einstein condensates trapped in a double-barrier potential by using a multiple-scale method. In the linear case, we find that the stable spots of the soliton formation are at the top of the barrier potential and at the region of barrier potential absence. For weak nonlinearity, it is shown that the height of the barrier potential has an important effect on the dark soliton dynamical properties. Especially, in the case of regarding a double-barrier potential as the output source of the solitons, the collision spots between two dark solitons can be controlled by the height of the barrier potential.展开更多
The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be cha...The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104083 and 10934011)
文摘We investigate the nonlinear modes in a rotating double well potential with 79T symmetry. Focus on the existence and stability of the nonlinear PT modes in this system, we found that five types of PT modes can stably exist by given certain parameter settings. The multistable area between these modes are studied numerically and the bistable and tristable areas are delimited. With different input trial wavefunctions, five types of solitary wave modes are identified. We found that the rotating of the potential can significantly affect the power flow of the fundamental harmonic mode, whose effect is absent for the other modes.
基金Project supported by the Science Research Foundation of the Education Bureau of Hunan Province of China (Grant No.09C227)
文摘We present an analytical solution of two solitons of Bose-Einstein condensates trapped in a double-barrier potential by using a multiple-scale method. In the linear case, we find that the stable spots of the soliton formation are at the top of the barrier potential and at the region of barrier potential absence. For weak nonlinearity, it is shown that the height of the barrier potential has an important effect on the dark soliton dynamical properties. Especially, in the case of regarding a double-barrier potential as the output source of the solitons, the collision spots between two dark solitons can be controlled by the height of the barrier potential.
基金Supported in part by the National Natural Science Foundation of China(11072108)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201028)+3 种基金the Program for New Century Excellent Talents in University(NCET-11-0832)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ13-0144)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ13-03)the Fundamental Research Funds for the Central Universities of China
文摘The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.