期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Rapid Fabrication of Electrodes for Symmetrical Solid Oxide Cells by Extreme Heat Treatment
1
作者 Weiwei Fan Zhu Sun +2 位作者 Manxi Wang Manxian Li Yuming Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期349-356,共8页
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop... Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner. 展开更多
关键词 electrochemical performance extreme heat treatment perovskite electrode symmetrical solid oxide cells
下载PDF
Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells 被引量:2
2
作者 Wan Nor Anasuhah Wan Yusoff Nurul Akidah Baharuddin +3 位作者 Mahendra Rao Somalu Andanastuti Muchtar Nigel P.Brandon Huiqing Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1933-1956,共24页
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review... This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers. 展开更多
关键词 nano composites ELECTRODE microstructure tailoring OXIDATION symmetrical solid oxide fuel cell
下载PDF
Radio-frequency magnetron sputtered thin-film La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ) perovskite electrodes for intermediate temperature symmetric solid oxide fuel cell(IT-SSOFC) 被引量:1
3
作者 Vicky Dhongde Aditya Singh +3 位作者 Jyotsana Kal Uzma Anjum M.Ali Haider Suddhasatwa Basu 《Materials Reports(Energy)》 2022年第2期75-85,共11页
The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCN... The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side. 展开更多
关键词 Symmetric solid oxide fuel cell Thin-film electrode Diffusion coefficient Molecular dynamics Radio-frequency magnetron sputtering Intermediate temperature
下载PDF
Tungsten doping La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)as electrode for highly efficient and stable symmetric solid oxide cells 被引量:1
4
作者 Xin-Yi Jiao Ao-Yan Geng +4 位作者 Yi-Yang Xue Xing-Bao Wang Fang-Jun Jin Yi-Han Ling Yun-Feng Tian 《Tungsten》 EI CSCD 2023年第4期598-606,共9页
Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)(LCFN)has been used in symmetric solid oxide cells(SSOCs)to obtain good electrochemical performance in both fuel cells(SOFCs)and electrolysis cells(SOECs)modes.... Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ)(LCFN)has been used in symmetric solid oxide cells(SSOCs)to obtain good electrochemical performance in both fuel cells(SOFCs)and electrolysis cells(SOECs)modes.However,its structural stability still faces challenges and the electrocatalytic activity also needs to be further improved.Herein,tungsten-doped La_(0.6)Ca_(0.4)Fe_(0.7)Ni_(0.2)W_(0.1)0_(3-δ)(LCFNW)perovskite oxide material was synthesized which exhibits good structural stability under H_(2)and superior electrochemical performance as an electrode for SSOCs.In SOFCs mode,the cell achieved the maximum power density of 0.58 W·cm^(-2)with wet H_(2)as fuel at 850℃.In SOECs mode,the current density can reach 1.81 A·cm^(-2)for pure CO_(2)electrolysis at 2 V.Moreover,the SSOCs exhibits outstanding long-term stability in both SOFCs and SOECs modes,proving that doping W in perovskite oxide is an effective strategy to enhance the catalytic activity and stability of the electrode.The LCFNW material developed in this work shows promising prospect as an electrode candidate for SSOCs. 展开更多
关键词 Symmetric solid oxide cells Perovskite oxide La_(0.6)Ca_(0.4)Fe_(0.8)Ni_(0.2)O_(3-δ) CO_(2)electrolysis Stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部