By Lie symmetry method, the Lie point symmetries and its Kac-Moody-Virasoro (KMV) symmetry algebra of (2+1)-dimensional dispersive long-wave equation (DLWE) are obtained, and the finite transformation of DLWE is given...By Lie symmetry method, the Lie point symmetries and its Kac-Moody-Virasoro (KMV) symmetry algebra of (2+1)-dimensional dispersive long-wave equation (DLWE) are obtained, and the finite transformation of DLWE is given by symmetry group direct method, which can recover Lie point symmetries. Then KMV symmetry algebra of DLWE with arbitrary order invariant is also obtained. On basis of this algebra the group invariant solutions and similarity reductions are also derived.展开更多
In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if H...In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if Hi( ) = 0.展开更多
By means of a simple ideal, which is firstly proposed for the continuous system, we present an arbitrary order classical Toda family invariant under common Virasoro-type symmetry algebra.
Based on some known facts of integrable models, this paper proposes a new (2+1)-dimensional bilinear model equation. By virtue of the formal series symmetry approach, the new model is proved to be integrable becaus...Based on some known facts of integrable models, this paper proposes a new (2+1)-dimensional bilinear model equation. By virtue of the formal series symmetry approach, the new model is proved to be integrable because of the existence of the higher order symmetries. The Lie point symmetries of the model constitute an infinite dimensional Kac- Moody Virasoro symmetry algebra. Making use of the infinite Lie point symmetries, the possible symmetry reductions of the model are also studied展开更多
This paper investigates the high order differential neighbourhoods of holomorphic mappings from S-1 x S-1 to a vector space and gives a new extension of the high-order Virasoro algebra.
We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coinci...We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coincides with the generalized Dobeault cohomology. We show that the two topological vertex algebras constructed from the N = 2 SCVA by A and B twist respectively are mirror pairs.展开更多
The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé...The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.展开更多
In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and th...In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.展开更多
The first cohomology group of generalized loop Virasoro algebras with coefficients in the tensor product of its adjoint module is shown to be trivial. The result is used to prove that Lie bialgebra structures on gener...The first cohomology group of generalized loop Virasoro algebras with coefficients in the tensor product of its adjoint module is shown to be trivial. The result is used to prove that Lie bialgebra structures on generalized loop Virasoro algebras are coboundary triangular. The authors generalize the results to generalized map Virasoro algebras.展开更多
In this paper, a (2+1)-dimensional MKdV-type system is considered. By applying the formal series symmetry approach, a set of infinitely many generalized symmetries is obtained. These symmetries constitute a closed ...In this paper, a (2+1)-dimensional MKdV-type system is considered. By applying the formal series symmetry approach, a set of infinitely many generalized symmetries is obtained. These symmetries constitute a closed infinite-dimensional Lie algebra which is a generalization of w∞ type algebra. Thus the complete integrability of this system is confirmed.展开更多
The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supe...The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely f(t). Some interesting special cases of symmetry algebras are commutativity of higher order generalized symmetries. many generalized symmetries with an arbitrary function presented, including a limit case f(t) = 1 related to the展开更多
In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
We analyze the super n-bracket built from associative operator products.Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity,we deal with the n odd case and give the generali...We analyze the super n-bracket built from associative operator products.Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity,we deal with the n odd case and give the generalized super Bremner identity.For the infinite conserved operators in the supersymmetric Landau problem,we derive the super W_(1+∞) n-algebra which satisfies the generalized super Jacobi and Bremner identities for the n even and odd cases,respectively.Moreover the super W_(1+∞) sub-2n-algebra is also given.展开更多
基金Supported by the Natural Science Foundation of China under Grant No. 10735030Ningbo Natural Science Foundation under Grant No. 2008A610017+3 种基金National Basic Research Program of China (973 Program 2007CB814800)Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C. Wong Magna Fund in Ningbo University
文摘By Lie symmetry method, the Lie point symmetries and its Kac-Moody-Virasoro (KMV) symmetry algebra of (2+1)-dimensional dispersive long-wave equation (DLWE) are obtained, and the finite transformation of DLWE is given by symmetry group direct method, which can recover Lie point symmetries. Then KMV symmetry algebra of DLWE with arbitrary order invariant is also obtained. On basis of this algebra the group invariant solutions and similarity reductions are also derived.
基金Supported by the Foundation of Shanghai Education Committee (06FZ029)NSF of China (10471091)"One Hundred Program" from University of Science and Technology of China
文摘In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if Hi( ) = 0.
文摘By means of a simple ideal, which is firstly proposed for the continuous system, we present an arbitrary order classical Toda family invariant under common Virasoro-type symmetry algebra.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10475055 and 90503006)the Science Research Fund of Zhejiang Provincial Education Department,China(Grant No20040969)
文摘Based on some known facts of integrable models, this paper proposes a new (2+1)-dimensional bilinear model equation. By virtue of the formal series symmetry approach, the new model is proved to be integrable because of the existence of the higher order symmetries. The Lie point symmetries of the model constitute an infinite dimensional Kac- Moody Virasoro symmetry algebra. Making use of the infinite Lie point symmetries, the possible symmetry reductions of the model are also studied
基金This work is supported in part by the Natural ScienceFoundation of Hainan
文摘This paper investigates the high order differential neighbourhoods of holomorphic mappings from S-1 x S-1 to a vector space and gives a new extension of the high-order Virasoro algebra.
文摘We construct an N = 2 superconformal vertex algebra(SCVA) from a generalized Calabi-Yau manifold and compute the BRST cohomology of its associated topological vertex algebras. We show that the BRST cohomology coincides with the generalized Dobeault cohomology. We show that the two topological vertex algebras constructed from the N = 2 SCVA by A and B twist respectively are mirror pairs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975131 and 11435005)the K C Wong Magna Fund in Ningbo University。
文摘The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.
基金Supported by National Natural Science Foundation of China(Grant Nos.11431010,11371278 and 11271284)Shanghai Municipal Science and Technology Commission(Grant No.12XD1405000)
文摘In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.
基金supported by the National Natural Science Foundation of China(Nos.10825101,11431010,11271284,11101269)the Scientific Research Starting Foundation for Doctors,Shanghai Ocean University(No.A-0209-13-0105380)the Youth Scholars of Shanghai Higher Education Institutions(No.ZZHY14026)
文摘The first cohomology group of generalized loop Virasoro algebras with coefficients in the tensor product of its adjoint module is shown to be trivial. The result is used to prove that Lie bialgebra structures on generalized loop Virasoro algebras are coboundary triangular. The authors generalize the results to generalized map Virasoro algebras.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030, 10675065, and 90503006, and PCSIRT (IRT0734)the National Basic Research Programme of China under Grant No.2007CB814800
文摘In this paper, a (2+1)-dimensional MKdV-type system is considered. By applying the formal series symmetry approach, a set of infinitely many generalized symmetries is obtained. These symmetries constitute a closed infinite-dimensional Lie algebra which is a generalization of w∞ type algebra. Thus the complete integrability of this system is confirmed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275123,11175092,11475052,and 11435005)the Shanghai Knowledge Service Platform for Trustworthy Internet of Things,China(Grant No.ZF1213)the Talent Fund and K C Wong Magna Fund in Ningbo University,China
文摘The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely f(t). Some interesting special cases of symmetry algebras are commutativity of higher order generalized symmetries. many generalized symmetries with an arbitrary function presented, including a limit case f(t) = 1 related to the
基金Supported by an NSF Grant 10471096 of China,"One Hundred Talents Program"from University of Science and Technology of China and"Trans-Century Training Programme Foundation for the Talents"from National Education Ministry of China
文摘In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
基金Supported by National Natural Science Foundation of China under Grant Nos.11375119,11475116,and 11547101
文摘We analyze the super n-bracket built from associative operator products.Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity,we deal with the n odd case and give the generalized super Bremner identity.For the infinite conserved operators in the supersymmetric Landau problem,we derive the super W_(1+∞) n-algebra which satisfies the generalized super Jacobi and Bremner identities for the n even and odd cases,respectively.Moreover the super W_(1+∞) sub-2n-algebra is also given.