期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Second Variation of the Functional L of Symplectic Critical Surfaces in Kähler Surfaces 被引量:2
1
作者 Xiaoli Han Jiayu Li 《Communications in Mathematics and Statistics》 SCIE 2014年第3期311-330,共20页
Let M be a complete Kähler surface andbe a symplectic surface which is smoothly immersed in M.Letαbe the Kähler angle ofin M.In the previous paper Han and Li(JEMS 12:505–527,2010)2010,we study the symple... Let M be a complete Kähler surface andbe a symplectic surface which is smoothly immersed in M.Letαbe the Kähler angle ofin M.In the previous paper Han and Li(JEMS 12:505–527,2010)2010,we study the symplectic critical surfaces,which are critical points of the functional L=1 cosαdμin the class of symplectic surfaces.In this paper,we calculate the second variation of the functional L and derive some consequences.In particular,we show that,if the scalar curvature of M is positive,is a stable symplectic critical surface with cosα≥δ>0,whose normal bundle admits a holomorphic section X∈L2(),thenis holomorphic.We construct symplectic critical surfaces in C2.We also prove a Liouville theorem for symplectic critical surfaces in C2. 展开更多
关键词 symplectic critical surface Holomorphic curve Kähler surface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部