期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Birkhoffian Symplectic Scheme for a Quantum System 被引量:2
1
作者 苏红玲 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第3期476-480,共5页
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from ... In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure- preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f . Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. 展开更多
关键词 quantum system Birkhoffian symplectic scheme local energy conservation law perturbed hamiltonian system
下载PDF
SYMPLECTIC SCHEMES FOR NONAUTONOMOUS HAMILTONIAN SYSTEM 被引量:2
2
作者 秦孟兆 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1996年第3期284-288,共5页
In this paper we generalize the method of constructing sympl ctic schemes by generating function in the case of autonomous Hamiltonian system to that of nonautonomous system.
关键词 symplectic scheme nonautonomous hamiltonian system
原文传递
Symplectic-like Difference Schemes for Generalized Hamiltonian Systems
3
作者 赵颖 王斌 季仲贞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第4期719-726,共8页
The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical vi... The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical viewpoints, we summarize a general method of constructing symplectic-like difference schemes of these kinds of systems. This study provides a new algorithm for the application of the symplectic geometry method in numerical solutions of general evolution equations. 展开更多
关键词 infinite-dimensional hamiltonian systems generalized hamiltonian systems symplectic-like difference schemes Poisson brackets
下载PDF
Symplectic perturbation series methodology for non-conservative linear Hamiltonian system with damping 被引量:2
4
作者 Zhiping Qiu Haijun Xia 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第6期983-996,I0002,共15页
In this paper,the symplectic perturbation series methodology of the non-conservative linear Hamiltonian system is presented for the structural dynamic response with damping.Firstly,the linear Hamiltonian system is bri... In this paper,the symplectic perturbation series methodology of the non-conservative linear Hamiltonian system is presented for the structural dynamic response with damping.Firstly,the linear Hamiltonian system is briefly introduced and its conservation law is proved based on the properties of the exterior products.Then the symplectic perturbation series methodology is proposed to deal with the non-conservative linear Hamiltonian system and its conservation law is further proved.The structural dynamic response problem with eternal load and damping is transformed as the non-conservative linear Hamiltonian system and the symplectic difference schemes for the non-conservative linear Hamiltonian system are established.The applicability and validity of the proposed method are demonstrated by three engineering examples.The results demonstrate that the presented methodology is better than the traditional Runge–Kutta algorithm in the prediction of long-time structural dynamic response under the same time step. 展开更多
关键词 symplectic perturbation series methodology Non-conservative hamiltonian system Structural dynamic response symplectic difference scheme
原文传递
一个模型量子系统的辛差分格式 被引量:1
5
作者 吴承埙 丁培柱 陈植 《吉林大学自然科学学报》 CAS CSCD 1995年第4期46-48,共3页
根据非自治哈密顿系统的辛差分格式,构造了适用于一个哈密顿显含时间的模型量子系统的辛差分格式。并应用这一格式计算了不同能量本征态的几率分布和总能量的时间演变。
关键词 辛差分格式 哈密顿系统 量子系统 非自治系统
下载PDF
高阶辛算法在典型量子器件模拟中的应用 被引量:1
6
作者 王丽华 黄志祥 +1 位作者 况晓静 吴先良 《光子学报》 EI CAS CSCD 北大核心 2015年第4期18-24,共7页
利用辛积分和高阶交错差分方法建立了求解含时薛定谔方程的高阶辛算法(SFDTD(4,4)).对空间部分的二阶导数采用四阶准确度的差分格式离散得到随时间演化的多维系统再引入四阶辛积分格式离散;探讨了SFDTD(4,4)法的稳定性,获得了含时薛定... 利用辛积分和高阶交错差分方法建立了求解含时薛定谔方程的高阶辛算法(SFDTD(4,4)).对空间部分的二阶导数采用四阶准确度的差分格式离散得到随时间演化的多维系统再引入四阶辛积分格式离散;探讨了SFDTD(4,4)法的稳定性,获得了含时薛定谔方程的一维以及多维的稳定性条件,并得到在含势能情况下该稳定性条件的具体表达式;借助复坐标沿伸概念,实现了SFDTD(4,4)法在量子器件模拟中的完全匹配层吸收边界条件.结合一维量子阱和金属场效应管传输的仿真,结果表明较传统的时域有限差分算法,SFDTD(4,4)有着更好的计算准确度,适用于长时间仿真.算法及相关结果可为实际量子器件的设计提供必要的参考. 展开更多
关键词 辛积分 薛定谔方程 高阶辛算法 稳定性条件 量子器件
下载PDF
波动方程辛算法的迭代求解 被引量:2
7
作者 蒋长锦 《计算物理》 CSCD 北大核心 2002年第1期13-16,共4页
对 2x2 利用中心差商算子 ,对expt作对角Pad啨逼近 ,由波动偏微分方程可得到两类具有O(Δx2 +Δt2l)和O(Δx4+Δt2l)精度的辛格式 .对由此类辛格式产生的线性方程组构造了两种迭代解法 ,并对l=1,2 ,3,4给出了它们的收敛条件 .
关键词 HAMILTON系统 辛差分格式 迭代解法 收敛条件 波动方程
下载PDF
保辛结构的哈密顿方程计算方法
8
作者 秦孟兆 《计算物理》 CSCD 北大核心 1992年第4期351-353,共3页
简单介绍关于辛几何和哈密顿力学某些概念和事实。并介绍一些简单常用的各种各样辛差分格式。
关键词 哈密顿方程 差分格式
下载PDF
一个强场模型的哈密顿形式 被引量:2
9
作者 吴承埙 丁培柱 陈植 《计算物理》 CSCD 北大核心 1996年第4期501-504,共4页
强场中的量子系统可能激发到高激发态,构造正则方程的本征函数展开法一般不再适用。就一个1维强场模型问题用对称差商代替哈密顿算符中的偏导数构造正则方程,再用平方守恒辛格式求数值解,结果与理论分析一致,表明提出的方法是成... 强场中的量子系统可能激发到高激发态,构造正则方程的本征函数展开法一般不再适用。就一个1维强场模型问题用对称差商代替哈密顿算符中的偏导数构造正则方程,再用平方守恒辛格式求数值解,结果与理论分析一致,表明提出的方法是成功的。 展开更多
关键词 强场 量子系统 正则方程 场伦
全文增补中
VARIATIONS ON A THEME BY EULER 被引量:2
10
作者 Kang Feng Dao-liu Wang (State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Chinese Academy of Sciences, Beijing 100080, China) 《Journal of Computational Mathematics》 SCIE EI CSCD 1998年第2期97-106,共10页
The oldest and simplest difference scheme is the explicit Euler method. Usually, it is not symplectic for general Hamiltonian systems. It is interesting to ask: Under what conditions of Hamiltonians, the explicit Eule... The oldest and simplest difference scheme is the explicit Euler method. Usually, it is not symplectic for general Hamiltonian systems. It is interesting to ask: Under what conditions of Hamiltonians, the explicit Euler method becomes symplectic? In this paper, we give the class of Hamiltonians for which systems the explicit Euler method is symplectic. In fact, in these cases, the explicit Euler method is really the phase how of the systems, therefore symplectic. Most of important Hamiltonian systems can be decomposed as the summation of these simple systems. Then composition of the Euler method acting on these systems yields a symplectic method, also explicit. These systems are called symplectically separable. Classical separable Hamiltonian systems are symplectically separable. Especially, we prove that any polynomial Hamiltonian is symplectically separable. 展开更多
关键词 hamiltonian systems symplectic difference schemes explicit Euler method NILPOTENT symplectically separable
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部