Suppose F is a field consisting of at least four elements. Let Mn(F) and SP2n(F) be the linear space of all n × n matrices and the group of all 2n × 2n symplectic matrices over F, respectively. A linear ...Suppose F is a field consisting of at least four elements. Let Mn(F) and SP2n(F) be the linear space of all n × n matrices and the group of all 2n × 2n symplectic matrices over F, respectively. A linear operator L : M2n(F) → M2n(F) is said to preserve the symplectic group if L(SP2n(F)) = SP2n(F). It is shown that L is an invertible preserver of the symplectic group if and only if L takes the form (i) L(X) = QPXP^-1 for any X ∈ M2n(F) or (ii) L(X) = QPX^TP^-1 for any X ∈M2n(F), where Q ∈ SP2n(F) and P is a generalized symplectic matrix. This generalizes the result derived by Pierce in Canad J. Math., 3(1975), 715-724.展开更多
The structure of symplectic groups over fields has been determined completely. Several authors discussed symplectic groups over commutative rings, but they made strong restrictions on the underlying rings. In this let...The structure of symplectic groups over fields has been determined completely. Several authors discussed symplectic groups over commutative rings, but they made strong restrictions on the underlying rings. In this letter we start from elementary symplectic matrices and,展开更多
In this paper,we prove that for every symplectic matrix M possessing eigenvalues on the unit circle,there exists a symplectic matrix P such that P<sup>-1</sup> MP is a symplectic matrix of the normal forms...In this paper,we prove that for every symplectic matrix M possessing eigenvalues on the unit circle,there exists a symplectic matrix P such that P<sup>-1</sup> MP is a symplectic matrix of the normal forms defined in this paper.展开更多
Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Th...Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n).展开更多
文摘Suppose F is a field consisting of at least four elements. Let Mn(F) and SP2n(F) be the linear space of all n × n matrices and the group of all 2n × 2n symplectic matrices over F, respectively. A linear operator L : M2n(F) → M2n(F) is said to preserve the symplectic group if L(SP2n(F)) = SP2n(F). It is shown that L is an invertible preserver of the symplectic group if and only if L takes the form (i) L(X) = QPXP^-1 for any X ∈ M2n(F) or (ii) L(X) = QPX^TP^-1 for any X ∈M2n(F), where Q ∈ SP2n(F) and P is a generalized symplectic matrix. This generalizes the result derived by Pierce in Canad J. Math., 3(1975), 715-724.
文摘The structure of symplectic groups over fields has been determined completely. Several authors discussed symplectic groups over commutative rings, but they made strong restrictions on the underlying rings. In this letter we start from elementary symplectic matrices and,
基金Partially supported by the NSF,MCSEC of China the Qiu Shi Sci.Tech.Foundation
文摘In this paper,we prove that for every symplectic matrix M possessing eigenvalues on the unit circle,there exists a symplectic matrix P such that P<sup>-1</sup> MP is a symplectic matrix of the normal forms defined in this paper.
基金Supported by NSFC(Grant Nos.11601121,11771129)Natural Science Foundation of He’nan Province of China(Grant No.162300410066)。
文摘Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n).