The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP&...The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.展开更多
文摘The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.