期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia
1
作者 Xiaorong Zhang Zhiying Chen +3 位作者 Yinyi Xiong Qin Zhou Ling-Qiang Zhu Dan Liu 《Neural Regeneration Research》 SCIE CAS 2025年第2期402-415,共14页
With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic... With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate.However,few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients.Similarly in Alzheimer’s disease and other neurological disorders,synaptic dysfunction is recognized as the main reason for cognitive decline.Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system.Recently,nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia.This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction,neuroinflammation,oxidative stress,and blood-brain barrier dysfunction that underlie the progress of vascular dementia.Additionally,we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia. 展开更多
关键词 endoplasmic reticulum stress endothelial nitric oxide synthase gene therapy nitric oxide NO-sGC-cGMP pathway synaptic dysfunction vascular dementia
下载PDF
Interleukin 1βreceptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1
2
作者 Roberto Piacentini Claudio Grassi 《Neural Regeneration Research》 SCIE CAS 2025年第2期416-423,共8页
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not complet... Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not completely understood.Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role.Here,we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain,highlighting the role of interleukins and,in particular,interleukin 1βas a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions. 展开更多
关键词 herpes simplex virus type 1 interleukin MICROGLIA NEUROINFLAMMATION synaptic dysfunction
下载PDF
Synaptic dysfunction in Alzheimer's disease:the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention 被引量:4
3
作者 Jade Marsh Pavlos Alifragis 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期616-623,共8页
The most prevalent form of dementia in the elderly is Alzheimer's disease.A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42(Aβ42),a smal... The most prevalent form of dementia in the elderly is Alzheimer's disease.A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42(Aβ42),a small hydrophobic peptide.Unfortunately,attempts to develop therapies targeting the accumulation of Aβ42 have not been successful to treat or even slow down the disease.It is possible that this failure is an indication that targeting downstream effects rather than the accumulation of the peptide itself might be a more effective approach.The accumulation of Aβ42 seems to affect various aspects of physiological cell functions.In this review,we provide an overview of the evidence that implicates Aβ42 in synaptic dysfunction,with a focus on how it contributes to defects in synaptic vesicle dynamics and neurotransmitter release.We discuss data that provide new insights on the Aβ42 induced pathology of Alzheimer's disease and a more detailed understanding of its contribution to the synaptic deficiencies that are associated with the early stages of the disease.Although the precise mechanisms that trigger synaptic dysfunction are still under investigation,the available data so far has enabled us to put forward a model that could be used as a guide to generate new therapeutic targets for pharmaceutical intervention. 展开更多
关键词 Alzheimer's disease amyloid-β 42 synaptic vesicles synaptic dysfunction neurotransmitter release
下载PDF
The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases 被引量:4
4
作者 Moxin Wu Manqing Zhang +6 位作者 Xiaoping Yin Kai Chen Zhijian Hu Qin Zhou Xianming Cao Zhiying Chen Dan Liu 《Translational Neurodegeneration》 SCIE CAS 2021年第4期584-594,共11页
Alzheimer's disease(AD)is a neurodegenerative disease characterized by progressive cognitive decline,accompanied by amyloid-β(Aβ)overload and hyperphosphorylated tau accumulation in the brain.Synaptic dysfunctio... Alzheimer's disease(AD)is a neurodegenerative disease characterized by progressive cognitive decline,accompanied by amyloid-β(Aβ)overload and hyperphosphorylated tau accumulation in the brain.Synaptic dysfunction,an important pathological hallmark in AD;is recognized as the main cause of the cognitive impairments.Accumulating evidence suggests that synaptic dysfunction could be an early pathological event in AD.Pathological tau,which is detached from axonal microtubules and mislocalized into pre-and postsynaptic neuronal compartments,is suggested to induce synaptic dysfunction in several ways,including reducing mobility and release of presynaptic vesicles,decreasing glutamatergic receptors,impairing the maturation of dendritic spines at postsynaptic terminals,disrupting mitochondrial transport and function in synapses,and promoting the phagocytosis of synapses by microglia.Here,we review the current understanding of how pathological tau mediates synaptic dysfunction and contributes to cognitive decline in AD.We propose that elucidating the mechanism by which pathological tau impairs synaptic function is essential for exploring novel therapeutic strategies for AD. 展开更多
关键词 Pathological tau synaptic dysfunction synaptic plasticity Alzheimer's disease
原文传递
Dysfunctional glia:contributors to neurodegenerative disorders 被引量:1
5
作者 Marta Sidoryk-Węgrzynowicz Lidia Strużyńska 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第2期218-222,共5页
Astrocytes are integral components of the central nervous system,where they are involved in numerous functions critical for neuronal development and functioning,including maintenance of blood-brain barrier,formation o... Astrocytes are integral components of the central nervous system,where they are involved in numerous functions critical for neuronal development and functioning,including maintenance of blood-brain barrier,formation of synapses,supporting neurons with nutrients and trophic factors,and protecting them from injury.These roles are markedly affected in the course of chronic neurodegenerative disorders,often before the onset of the disease.In this review,we summarize the recent findings supporting the hypothesis that astrocytes play a fundamental role in the processes contributing to neurodegeneration.We focus onα-synucleinopathies and tauopathies as the most common neurodegenerative diseases.The mechanisms implicated in the development and progression of these disorders appear not to be exclusively neuronal,but are often related to the astrocytic-neuronal integrity and the response of astrocytes to the altered microglial function.A profound understanding of the multifaceted functions of astrocytes and identification of their communication pathways with neurons and microglia in health and in the disease is of critical significance for the development of novel mechanism-based therapies against neurodegenerative disorders. 展开更多
关键词 ASTROCYTES microglia NEURODEGENERATION neuroinflammation synaptic dysfunction SYNUCLEINOPATHIES TAUOPATHIES
下载PDF
Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease 被引量:21
6
作者 Cheril Tapia-Rojas Nibaldo C.Inestrosa 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1705-1710,共6页
Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by... Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD. 展开更多
关键词 Wnt signaling Wnt target genes WNT/Β-CATENIN Alzheimer disease amyloid-β tau phosphorylation memory loss synaptic dysfunction
下载PDF
From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer’s and Parkinson’s diseases 被引量:3
7
作者 Debia Wakhloo Jane Oberhauser +1 位作者 Angela Madira Sameehan Mahajani 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2606-2614,共9页
Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation... Two of the most common neurodegenerative disorders-Alzheimer’s and Parkinson’s diseases-are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation.The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer’s disease pathology.The major hallmark of Parkinson’s disease is the loss of dopaminergic neurons in the substantia nigra pars compacta,following the formation of Lewy bodies,which consists primarily of alpha-synuclein aggregates.However,the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood.Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders.Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients.While some publications provide significant findings related to axonal regeneration in Alzheimer’s and Parkinson’s diseases,they also highlight the limitations and obstacles to the development of neuroregenerative therapies.In this review,we summarize in vitro and in vivo findings related to neurogenesis,neuroregeneration and neurodegeneration in the context of Alzheimer’s and Parkinson’s diseases. 展开更多
关键词 ALPHA-SYNUCLEIN amyloid beta plaques autophagy dopaminergic neurons human iPSCs mitochondrial dysfunction scRNA sequencing synaptic dysfunction Tau Wallerian degeneration
下载PDF
STON2风险变异通过影响Syt1转运和突触功能导致精神分裂症样行为
8
作者 马远林 高凯 +15 位作者 孙晓璇 王金鑫 杨扬 武建荧 柴安平 姚立 刘楠 郁昊 苏怡 卢天兰 王力芳 岳伟华 章晓辉 徐林 张岱 李俊 《Science Bulletin》 SCIE EI CAS CSCD 2024年第10期1458-1471,共14页
Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(ST... Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(STON2)gene encodes a major adaptor for clathrin-mediated endocytosis(CME)of synaptic vesicles.In this study,we showed that the C-C(307Pro-851Ala)haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME.We found that schizophrenia-related STON2 variations led to protein dephosphorylation,which affected its interaction with synaptotagmin 1(Syt1),a calcium sensor protein located in the presynaptic membrane that is critical for CME.STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission,short-term plasticity,and schizophrenia-like behaviors.Moreover,among seven antipsychotic drugs,patients with the C-C(307Pro-851Ala)haplotype responded better to haloperidol than did the T-A(307Ser-851Ser)carriers.The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice.Our findings demonstrated the effect of schizophreniarelated STON2 variations on synaptic dysfunction through the regulation of CME,which might be attractive therapeutic targets for treating schizophrenia-like phenotypes. 展开更多
关键词 STON2 variations SCHIZOPHRENIA synaptic dysfunction Syt1 HALOPERIDOL
原文传递
Intraneuronal accumulation of Aβ42 induces age-dependent slowing of neuronal transmission in Drosophila 被引量:5
9
作者 Jing-Ya Lin Wen-An Wang +3 位作者 Xiao Zhang Hai-Yan Liu Xiao-Liang Zhao Fu-De Huang 《Neuroscience Bulletin》 SCIE CAS CSCD 2014年第2期185-190,共6页
Beta amyloid (Aβ42)-induced dysfunction and loss of synapses are believed to be major underlying mechanisms for the progressive loss of learning and memory abilities in Alzheimer's disease (AD). The vast majorit... Beta amyloid (Aβ42)-induced dysfunction and loss of synapses are believed to be major underlying mechanisms for the progressive loss of learning and memory abilities in Alzheimer's disease (AD). The vast majority of investigations on AD-related synaptic impairment focus on synaptic plasticity, especially the decline of long-term potentiation of synaptic transmission caused by extracellular Aβ42. Changes in other aspects of synaptic and neuronal functions are less studied or undiscovered. Here, we report that intraneuronal accumulation of Aβ42 induced an age- dependent slowing of neuronal transmission along pathways involving multiple synapses. 展开更多
关键词 neuronal transmission synaptic dysfunction LATENCY Alzheimer's disease intraneuronal betaamyloid
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部