期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The role of axon guidance molecules in the pathogenesis of epilepsy
1
作者 Zheng Liu Chunhua Pan Hao Huang 《Neural Regeneration Research》 SCIE CAS 2025年第5期1244-1257,共14页
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no... Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition. 展开更多
关键词 axon guidance drug-resistant epilepsy EPILEPSY nerve regeneration nervous system diseases neural pathways neuroinflammatory diseases neuronal plasticity NEURONS synaptic remodeling
下载PDF
Neuropeptide Y gene transfection inhibits post-epileptic hippocampal synaptic reconstruction 被引量:2
2
作者 Fan Zhang Wenqing Zhao +5 位作者 Wenling Li Changzheng Dong Xinying Zhang Jiang Wu Na Li Chuandong Liang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第17期1597-1605,共9页
Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injec... Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injection of neuropeptide Y into animal models of epilepsy. In this study, a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene was injected into the lateral ventricle of rats, while the ipsilateral hippocampus was injected with kainic acid to establish the epileptic model. After transfection of neuropeptide Y gene, mossy fiber sprouting in the hippocampal CA3 region of epileptic rats was significantly suppressed, hippocampal synaptophysin (p38) mRNA and protein expression were inhibited, and epileptic seizures were reduced. These experimental findings indicate that a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene reduces mossy fiber sprouting and inhibits abnormal synaptophysin expression, thereby suppressing post-epileptic synaptic reconstruction. 展开更多
关键词 neural regeneration gene therapy neural plasticity NEURODEGENERATION recombinantadeno-associated virus vector neuropeptide Y epilepsy kainic acid synaptic remodeling mossyfiber sprouting hippocampus SYNAPTOPHYSIN NEUROREGENERATION
下载PDF
The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders 被引量:2
3
作者 Kaifan Zhang Yan Wang +2 位作者 Tianda Fan Cheng Zeng Zhong Sheng Sun 《Protein & Cell》 SCIE CSCD 2022年第1期6-25,共20页
The serine/threonine p21-activated kinases(PAKs),as main effectors of the Rho GTPases Cdc42 and Rac,represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity.... The serine/threonine p21-activated kinases(PAKs),as main effectors of the Rho GTPases Cdc42 and Rac,represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity.PAKs show wide expression in the brain,but they differ in specific cell types,brain regions,and developmental stages.PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines.PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders.Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment,comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases,which may also represent potential therapeutic targets of these diseases. 展开更多
关键词 p21-activated kinases expression pattern synaptic cytoskeletal remodeling neuronal function neurological diseases
原文传递
Drosophila Studies on Autism Spectrum Disorders 被引量:5
4
作者 Yao Tian Zi Chao Zhang Junhai Han 《Neuroscience Bulletin》 SCIE CAS CSCD 2017年第6期737-746,共10页
In the past decade, numerous genes associated with autism spectrum disorders(ASDs) have been identified. These genes encode key regulators of synaptogenesis,synaptic function, and synaptic plasticity. Drosophila is ... In the past decade, numerous genes associated with autism spectrum disorders(ASDs) have been identified. These genes encode key regulators of synaptogenesis,synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding. 展开更多
关键词 Autism spectrum disorders Drosophila Chromatin remodeling synaptic scaffolding synaptic transmission
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部