期刊文献+
共找到546,559篇文章
< 1 2 250 >
每页显示 20 50 100
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
1
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanismS
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
2
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
3
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
ENGINEERING CHARACTERISTICS AND ITS MECHANISM EXPLANATION OF VIBRATORY SYNCHRONIZATION TRANSMISSION 被引量:11
4
作者 XiongWanli WenBangchun DuanZhishan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期185-188,共4页
Vibratory synchronization transmission (VST) is a kind of special physicalphenomenon in inertia vibration mechanical systems. For an inertia vibration mechanical systemdriven by one pair of motors runs in step, even t... Vibratory synchronization transmission (VST) is a kind of special physicalphenomenon in inertia vibration mechanical systems. For an inertia vibration mechanical systemdriven by one pair of motors runs in step, even the power supply of one motor is cut off, the motorcan continue to keep rotating state under the vibration exciting of the machine body driven by onlyone other motor. And its rotating frequency will be the same as that of the other one. The transientprocess of this wonderful physical phenomenon has not been described quantitatively according tocurrent-existing mechanical models. On the basis of investigation of the engineering characteristicsof VST, a mechanical and electrical coupling mathematical model of a two-shaft inertia vibrationmachine is established. With this model, the transient process of VST is recurred quantitatively andsuccessfully, and a reasonable explanation is given. 展开更多
关键词 SELF-synchronization Vibratory synchronization transmission Mechanical andelectrical coupling
下载PDF
Adaptive synchronization of uncertain chaotic systems via switching mechanism 被引量:1
5
作者 冯毅夫 张庆灵 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期75-81,共7页
This paper deals with the problem of synchronization for a class of uncertain chaotic systems. The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error, with unknown growth... This paper deals with the problem of synchronization for a class of uncertain chaotic systems. The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error, with unknown growth rate. A logic-based switching mechanism is presented for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on the Lyapunov approach, the adaptation law is determined to tune the controller gain vector online according to the possible nonlinearities. To demonstrate the efficiency of the proposed scheme, the well-known chaotic system namely Chua's circuit is considered as an illustrative example. 展开更多
关键词 chaos synchronization adaptive synchronization switching mechanism
下载PDF
A 5M Synchronization Mechanism for Digital Twin Shop-Floor
6
作者 Weiran Liu Jiangfeng Cheng +4 位作者 Zhiwen Wen Xiaofu Zou Zhaozong Wang Hongting Liu Fei Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期105-126,共22页
In recent years,as a promising way to realize digital transformation,digital twin shop-floor(DTS)plays an impor-tant role in smart manufacturing.The core feature of DTS is the synchronization.How to implement and main... In recent years,as a promising way to realize digital transformation,digital twin shop-floor(DTS)plays an impor-tant role in smart manufacturing.The core feature of DTS is the synchronization.How to implement and maintain the synchronization is critical for DTS.However,there is still a lack of a common definition for synchronization in DTS.Besides,a systematic synchronization mechanism for DTS is strongly needed.This paper first summarizes the defi-nition and requirements of synchronization in DTS,to clarify the understanding of synchronization in DTS.Then,a 5M synchronization mechanism for DTS is proposed,where 5M refers to multi-system data,multi-fidelity model,multi-resource state,multi-level state,and multi-stage operation.As a bottom-up synchronization mechanism,5M synchronization mechanism for DTS has the potential to support DTS to achieve and maintain physical-virtual state synchronization,and to realize operation synchronization of DTS.The implementation methods of 5M synchronization mechanism for DTS are also introduced.Finally,the proposed synchronization mechanism is validated in a digital twin satellite assembly shop-floor,which proves the effectiveness and feasibility of the mechanism. 展开更多
关键词 Digital twin Digital twin shop-floor synchronization in digital twin shop-floor synchronization mechanism Satellite assembly shop-floor
下载PDF
Synchronization mechanism of clapping rhythms in mutual interacting individuals
7
作者 Shi-Lan Su Jing-Hua Xiao +1 位作者 Wei-Qing Liu Ye Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期197-206,共10页
In recent years, clapping synchronization between individuals has been widely studied as one of the typical synchronization phenomena. In this paper, we aim to reveal the synchronization mechanism of clapping interact... In recent years, clapping synchronization between individuals has been widely studied as one of the typical synchronization phenomena. In this paper, we aim to reveal the synchronization mechanism of clapping interactions by observing two individuals’ clapping rhythms in a series of experiments. We find that the two synchronizing clapping rhythm series exhibit long-range cross-correlations(LRCCs);that is, the interaction of clapping rhythms can be seen as a strong-anticipation process. Previous studies have demonstrated that the interactions in local timescales or global matching in statistical structures of fluctuation in long timescales can be sources of the strong-anticipation process. However, the origin of the strong anticipation process often appears elusive in many complex systems. Here, we find that the clapping synchronization process may result from the local interaction between two clapping individuals and may result from the more global coordination between two clapping individuals. We introduce two stochastic models for mutually interacting clapping individuals that generate the LRCCs and prove theoretically that the generation of clapping synchronization process needs to consider both local interaction and global matching. This study provides a statistical framework for studying the internal synchronization mechanism of other complex systems. Our theoretical model can also be applied to study the dynamics of other complex systems with the LRCCs, including finance, transportation, and climate. 展开更多
关键词 synchronization mechanism clapping rhythm numerical simulation
下载PDF
Synchronization motions of a two-link mechanism with an improved OPCL method
8
作者 韩清凯 赵雪彦 闻邦椿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1561-1568,共8页
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d... An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations. 展开更多
关键词 two-link mechanism controlled synchronization motions improved OPCL method
下载PDF
Study on the Establishment of the Synchronization Mechanism for R&D and Standardization in Shenzhen High-Tech Enterprises
9
作者 Wang Lei Cheng Shengtao Engineer,Shenzhen institute of Standards and Technology, Shenzhen Administration Bureau of Market Supervision, 《China Standardization》 2010年第5期39-44,共6页
The paper analyses the advantages of Shenzhen high-tech enterprises to establish the synchronization mechanism for R&D and standardization based on the characteristics of Shenzhen high-tech industries,to provide some... The paper analyses the advantages of Shenzhen high-tech enterprises to establish the synchronization mechanism for R&D and standardization based on the characteristics of Shenzhen high-tech industries,to provide some guidance, the paper provides some key points to establish the synchronization mechanism of R&D. and standardization for high-tech enterprises. 展开更多
关键词 HIGH-TECH R&D STANDARDIZATION synchronization mechanism
下载PDF
Synchronization in multilayer networks through different coupling mechanisms
10
作者 Xiang Ling Bo Hua +4 位作者 Ning Guo Kong-Jin Zhu Jia-Jia Chen Chao-Yun Wu Qing-Yi Hao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期772-778,共7页
In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investig... In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investigate synchronization phenomena in multilayer networks with nonidentical topological structures based on three specific coupling mechanisms:assortative,disassortative,and anti-assortative couplings.We find rich and complex synchronous dynamic phenomena in coupled networks.We also study the behavior of effective frequencies for layers I and II to understand the underlying microscopic dynamics occurring under the three different coupling mechanisms.In particular,the coupling mechanisms proposed here have strong robustness and effectiveness and can produce abundant synchronization phenomena in coupled networks. 展开更多
关键词 coupling mechanisms synchronization phenomena coupled networks
下载PDF
Cascaded ELM-Based Joint Frame Synchronization and Channel Estimation over Rician Fading Channel with Hardware Imperfections 被引量:1
11
作者 Qing Chaojin Rao Chuangui +2 位作者 Yang Na Tang Shuhai Wang Jiafan 《China Communications》 SCIE CSCD 2024年第6期87-102,共16页
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com... Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations. 展开更多
关键词 channel estimation extreme learning machine frame synchronization hardware imperfection nonlinear distortion synchronization metric
下载PDF
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method 被引量:1
12
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test Mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
下载PDF
Fabrication Techniques and Sensing Mechanisms of Textile‑Based Strain Sensors:From Spatial 1D and 2D Perspectives 被引量:4
13
作者 Shilin Liu Wenting Zhang +3 位作者 Jingzong He Yonggen Lu Qilin Wu Malcolm Xing 《Advanced Fiber Materials》 SCIE EI CAS 2024年第1期36-67,共32页
The intelligent textile sensors based on fiber(1D)and fabric(2D)are the ideal candidates for wearable devices.Their flexible weaving and unique structure endow them with flexibility,lightweight,good air permeability,a... The intelligent textile sensors based on fiber(1D)and fabric(2D)are the ideal candidates for wearable devices.Their flexible weaving and unique structure endow them with flexibility,lightweight,good air permeability,and feasible integration with garments.In view of the spring-up of novel textile-based strain sensors,the novel materials and fabrication approaches were elaborated from spatial perspectives,i.e.,1D fibers/yarn and 2D fabric.The intrinsic sensing mechanism is the primary fac-tor affecting sensor sensitivity,and the variation trend of the sensing signal is closely related to it.Although existing studies have involved various sensing mechanisms,there is still lacking systematic classification and discussion.Hence,the sensing mechanisms of textile-based sensors were elaborated from spatial perspectives.Considering that strain sensors were mostly based on resistance variation,the sensing mechanisms of resistive textile-based strain sensors were mainly focused,mainly including fiber deformation,tunneling effect,crack propagation,fabric deformation,electrical contact and bridge connec-tion.Meanwhile,the corresponding resistance prediction models,usually used as important data fitting methodology,were also comprehensively discussed,which can reproduce the resistance trend and provide guidance for the sensor performance.Finally,the multifunctionality of textile-based strain sensors was summarized,namely multi-mode signal detection,visual interaction,energy collection,thermal management and medical treatment were discussed.It was expected to provide research insights into the multifunctional integration of textile sensors. 展开更多
关键词 Textile sensors Fabrication approaches Sensing mechanism Prediction model Multifunctionality
原文传递
Failure mechanism and infrared radiation characteristic of hard siltstone induced by stratification effect 被引量:1
14
作者 CHENG Yun SONG Zhanping +2 位作者 XU Zhiwei YANG Tengtian TIAN Xiaoxu 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1058-1074,共17页
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora... The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass. 展开更多
关键词 Hard siltstone Failure mechanism Stratification effect Infrared radiation characteristic Temporal-damage mechanism DISSIMILATION
下载PDF
Regeneration of the heart:f rom molecular mechanisms to clinical therapeutics 被引量:2
15
作者 Qian-Yun Guo Jia-Qi Yang +1 位作者 Xun-Xun Feng Yu-Jie Zhou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期80-97,共18页
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea... Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury. 展开更多
关键词 Heart regeneration Cardiac disease THERAPEUTICS Signaling mechanisms
下载PDF
Phase Desynchronization as a Mechanism for Transitions to High—Dimensional Chaos
16
作者 ZHENGZhi-Gang HUGang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第6期682-688,共7页
Phase is an important degree of freedom in studies of chaotic oscillations. Phase coherence and localization in coupled chaotic elements are studied. It is shown that phase desynchronization is a key mechanism respons... Phase is an important degree of freedom in studies of chaotic oscillations. Phase coherence and localization in coupled chaotic elements are studied. It is shown that phase desynchronization is a key mechanism responsible for the transitions from low- to high-dimensional chaos. The route from low-dimensional chaos to high-dimensional toroidal chaos is accompanied by a cascade of phase desynchronizations. Phase synchronization tree is adopted to exhibit the entrainment process. This bifurcation tree implies an intrinsic cascade of order embedded in irregular motions. 展开更多
关键词 phase synchronization phase localization Lyapunov exponents
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
17
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
Antagonism effect of residual S triggers the dual-path mechanism for water oxidation 被引量:1
18
作者 Li Liu Jinming Cao +5 位作者 Siqi Hu Tinghui Liu Can Xu Wensheng Fu Xinguo Ma Xiaohui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期568-579,I0014,共13页
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ... Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability. 展开更多
关键词 Electrochemical reconstruction Adsorbate evolution mechanism Lattice oxygen oxidation mechanism Oxygen evolution reaction Residual sulfur
下载PDF
Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
19
作者 Dong-Jie Qian 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期187-191,共5页
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive ... Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop. 展开更多
关键词 complex network explosive synchronization positive feedback mobile agent
下载PDF
Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects 被引量:1
20
作者 Hao-Yang Cheng Guang-Liang Su +2 位作者 Yu-Xuan Wu Gang Chen Zi-Li Yu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第7期940-954,共15页
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy.Prior research has illuminated reasons behind drug resistance,including increased drug efflux,alterations ... Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy.Prior research has illuminated reasons behind drug resistance,including increased drug efflux,alterations in drug targets,and abnormal activation of oncogenic pathways.However,there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment(TME).Recent studies on extracellular vesicles(EVs)have provided valuable insights.EVs are membrane-bound particles secreted by all cells,mediating cell-to-cell communication.They contain functional cargoes like DNA,RNA,lipids,proteins,and metabolites from mother cells,delivered to other cells.Notably,EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs.This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance,covering therapeutic approaches like chemo-therapy,targeted therapy,immunotherapy and even radiotherapy.Detecting Ev-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance.Additionally,targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance.We highlight the importance of conducting in-depth mechanistic research on EVs,their cargoes,and functional ap-proaches specifically focusing on EV subpopulations.These efforts will significantly advance the devel-opment of strategies to overcome drug resistance in anti-tumor therapy. 展开更多
关键词 Extracellular vesicle Anti-Tumor therapy Drug resistance mechanismS PROSPECTS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部